forked from NoamRosenberg/autodeeplab
-
Notifications
You must be signed in to change notification settings - Fork 1
/
operations.py
executable file
·174 lines (137 loc) · 6.2 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
OPS = {
'none' : lambda C, stride, affine: Zero(stride),
'avg_pool_3x3' : lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False),
'max_pool_3x3' : lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1),
'skip_connect' : lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
'sep_conv_3x3' : lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
'sep_conv_5x5' : lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
'dil_conv_3x3' : lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
'dil_conv_5x5' : lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),
}
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
def forward(self, x):
return self.op(x)
class DilConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
super(DilConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, dilation=dilation, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, stride):
super(Zero, self).__init__()
self.stride = stride
def forward(self, x):
if self.stride == 1:
return x.mul(0.)
return x[:,:,::self.stride,::self.stride].mul(0.)
class FactorizedReduce(nn.Module):
#TODO: why conv1 and conv2 in two parts ?
def __init__(self, C_in, C_out, affine=True):
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out, affine=affine)
def forward(self, x):
x = self.relu(x)
out = torch.cat([self.conv_1(x), self.conv_2(x[:,:,1:,1:])], dim=1)
out = self.bn(out)
return out
class DoubleFactorizedReduce(nn.Module):
#TODO: why conv1 and conv2 in two parts ?
def __init__(self, C_in, C_out, affine=True):
super(DoubleFactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=4, padding=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=4, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out, affine=affine)
def forward(self, x):
x = self.relu(x)
out = torch.cat([self.conv_1(x), self.conv_2(x[:,:,1:,1:])], dim=1)
out = self.bn(out)
return out
class FactorizedIncrease (nn.Module) :
def __init__ (self, in_channel, out_channel) :
super(FactorizedIncrease, self).__init__()
self._in_channel = in_channel
self.op = nn.Sequential (
nn.Upsample(scale_factor=2, mode="bilinear"),
nn.ReLU(inplace = False),
nn.Conv2d(self._in_channel, out_channel, 1, stride=1, padding=0),
nn.BatchNorm2d(out_channel)
)
def forward (self, x) :
return self.op (x)
class DoubleFactorizedIncrease (nn.Module) :
def __init__ (self, in_channel, out_channel) :
super(DoubleFactorizedIncrease, self).__init__()
self._in_channel = in_channel
self.op = nn.Sequential (
nn.Upsample(scale_factor=4, mode="bilinear"),
nn.ReLU(inplace = False),
nn.Conv2d(self._in_channel, out_channel, 1, stride=1, padding=0),
nn.BatchNorm2d(out_channel)
)
def forward (self, x) :
return self.op (x)
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, paddings, dilations):
super(ASPP, self).__init__()
self.conv11 = nn.Sequential(nn.Conv2d(in_channels, in_channels, 1, bias=False, ),
nn.BatchNorm2d(in_channels))
self.conv33 = nn.Sequential(nn.Conv2d(in_channels, in_channels, 3,
padding=paddings, dilation=dilations, bias=False, ),
nn.BatchNorm2d(in_channels))
self.conv_p = nn.Sequential(nn.Conv2d(in_channels, in_channels, 1, bias=False, ),
nn.BatchNorm2d(in_channels),
nn.ReLU())
self.concate_conv = nn.Conv2d(in_channels * 3, out_channels, 1, bias=False, stride=1, padding=0)
def forward(self, x):
conv11 = self.conv11(x)
conv33 = self.conv33(x)
# image pool and upsample
image_pool = nn.AvgPool2d(kernel_size=x.size()[2:])
upsample = nn.Upsample(size=x.size()[2:], mode='bilinear', align_corners=True)
image_pool = image_pool(x)
conv_image_pool = self.conv_p(image_pool)
upsample = upsample(conv_image_pool)
# concate
concate = torch.cat([conv11, conv33, upsample], dim=1)
return self.concate_conv(concate)