-
Notifications
You must be signed in to change notification settings - Fork 25
/
scroll_compressor_valves.py
250 lines (212 loc) · 9.23 KB
/
scroll_compressor_valves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
## This file is meant for experimentation with PDSim features and may not
## work for you. Caveat emptor!!
#
from __future__ import division, print_function
from math import pi
import timeit
from PDSim.flow.flow_models import IsentropicNozzleWrapper
from PDSim.flow.flow import FlowPath
from PDSim.core.core import struct
from PDSim.scroll.core import Scroll
from PDSim.core.containers import Tube
from PDSim.core.motor import Motor
from PDSim.flow.flow_models import ValveModel
try:
# from PDSim.scroll.plots import plotScrollSet
from PDSim.plot.plots import debug_plots # (Uncomment if you want to do the debug_plots)
plotting = True
except ImportError as IE:
print(IE)
print('Plotting is disabled')
plotting = False
from CoolProp import State
def Compressor(ScrollClass, Te = 253, Tc = 310, f = None, OneCycle = False, Ref = 'R410A', HDF5file='scroll_compressor.h5', discharge_valve=True):
ScrollComp = ScrollClass()
ScrollComp.set_scroll_geo(83e-6, 2.2, 0.005, 0.006) #Set the scroll wrap geometry
ScrollComp.set_disc_geo('2Arc',r2 = 0)
ScrollComp.geo.delta_flank = 10e-6
ScrollComp.geo.delta_radial = 10e-6
ScrollComp.geo.delta_suction_offset = 0.0e-3
ScrollComp.geo.phi_ie_offset = 0.0
# print(ScrollComp.geo); quit()
ScrollComp.omega = 3000/60*2*pi
ScrollComp.Tamb = 298.0
#Temporarily set the bearing dimensions
ScrollComp.mech = struct()
ScrollComp.mech.D_upper_bearing = 0.04
ScrollComp.mech.L_upper_bearing = 0.04
ScrollComp.mech.c_upper_bearing = 20e-6
ScrollComp.mech.D_crank_bearing = 0.04
ScrollComp.mech.L_crank_bearing = 0.04
ScrollComp.mech.c_crank_bearing = 20e-6
ScrollComp.mech.D_lower_bearing = 0.025
ScrollComp.mech.L_lower_bearing = 0.025
ScrollComp.mech.c_lower_bearing = 20e-6
ScrollComp.mech.thrust_ID = 0.05
ScrollComp.mech.thrust_friction_coefficient = 0.028 #From Chen thesis
ScrollComp.mech.orbiting_scroll_mass = 2.5
ScrollComp.mech.L_ratio_bearings = 3
ScrollComp.mech.mu_oil = 0.008
ScrollComp.h_shell = 0.02
ScrollComp.A_shell = 0.05
ScrollComp.HTC = 0.01
ScrollComp.motor = Motor()
ScrollComp.motor.set_eta(0.9)
ScrollComp.motor.suction_fraction = 1.0
Tin = Te + 11.1
temp = State.State(Ref,{'T':Te,'Q':1})
pe = temp.p
temp.update(dict(T=Tc, Q=1))
pc = temp.p
inletState = State.State(Ref,{'T':Tin,'P':pe})
T2s = ScrollComp.guess_outlet_temp(inletState,pc)
outletState = State.State(Ref,{'T':T2s,'P':pc})
mdot_guess = inletState.rho*ScrollComp.Vdisp*ScrollComp.omega/(2*pi)
ScrollComp.add_tube(Tube(key1='inlet.1',
key2='inlet.2',
L=0.3,
ID=0.02,
mdot=mdot_guess,
State1=inletState.copy(),
fixed=1,
TubeFcn=ScrollComp.TubeCode))
ScrollComp.add_tube(Tube(key1='outlet.1',
key2='outlet.2',
L=0.3,
ID=0.02,
mdot=mdot_guess,
State2=outletState.copy(),
fixed=2,
TubeFcn=ScrollComp.TubeCode))
ScrollComp.auto_add_CVs(inletState, outletState)
ScrollComp.auto_add_leakage(flankFunc = ScrollComp.FlankLeakage,
radialFunc = ScrollComp.RadialLeakage)
FP = FlowPath(key1='inlet.2',
key2='sa',
MdotFcn=IsentropicNozzleWrapper(),
)
FP.A = pi*0.01**2/4
ScrollComp.add_flow(FP)
ScrollComp.add_flow(FlowPath(key1='sa',
key2='s1',
MdotFcn=ScrollComp.SA_S1,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
ScrollComp.add_flow(FlowPath(key1 = 'sa',
key2 = 's2',
MdotFcn = ScrollComp.SA_S2,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
if not discharge_valve:
ScrollComp.add_flow(FlowPath(key1 = 'outlet.1',
key2 = 'dd',
MdotFcn = ScrollComp.DISC_DD,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
ScrollComp.add_flow(FlowPath(key1 = 'outlet.1',
key2 = 'ddd',
MdotFcn = ScrollComp.DISC_DD,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
else:
E = 1.93e11 # Youngs Modulus, [Pa]
h_valve = 0.0006 # Valve thickness, [m]
d_discharge = ScrollComp.geo.ra_arc1*1.9 # Port diameter [m]
l_valve = 5*d_discharge # Total length of valve, [m]
a_valve = l_valve/1.5 # Distance from anchor to force, [m]
assert(a_valve < l_valve)
rho_valve = 8000 # Density of spring steel, [kg/m^3]
C_D = 1.17 # Drag coefficient [-]
d_valve = d_discharge*1.5 # Valve Diameter [m]
x_stopper = 0.006 # Stopper location [m]
I=(d_valve*h_valve**3)/12 # Moment of Inertia for valve,[m^4]
k_valve=(6*E*I)/(a_valve**2*(3*l_valve-a_valve)) # Valve stiffness
m_eff=(1/3)*rho_valve*l_valve*d_valve*h_valve # Effective mass of valve reeds
x_tr_discharge = 0.25*(d_discharge**2/d_valve)
# Construct the valve
ScrollComp.discharge_valve = ValveModel(
d_valve=d_valve,
d_port=d_discharge,
C_D=C_D,
m_eff=m_eff,
k_valve=k_valve,
rho_valve=rho_valve, # Not used directly
x_stopper=x_stopper,
x_tr=x_tr_discharge,
key_up=['ddd','dd'],
key_down='outlet.1'
)
# Inform the model about the valve
ScrollComp.add_valve(ScrollComp.discharge_valve)
ScrollComp.add_flow(FlowPath(key1 = 'outlet.1',
key2 = 'dd',
MdotFcn = ScrollComp.DischargeValve,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
ScrollComp.add_flow(FlowPath(key1 = 'outlet.1',
key2 = 'ddd',
MdotFcn = ScrollComp.DischargeValve,
MdotFcn_kwargs = dict(X_d = 0.7)
)
)
# ScrollComp.add_flow(FlowPath(key1 = 'outlet.1',
# key2 = 'd1',
# MdotFcn = ScrollComp.DISC_D1,
# MdotFcn_kwargs = dict(X_d = 0.7)
# )
# )
#
# FP = FlowPath(key1='outlet.1',
# key2='dd',
# MdotFcn=IsentropicNozzleWrapper(),
# )
# FP.A = pi*0.006**2/4
# ScrollComp.add_flow(FP)
#
# FP = FlowPath(key1='outlet.1',
# key2='ddd',
# MdotFcn=IsentropicNozzleWrapper(),
# )
# FP.A = pi*0.006**2/4
# ScrollComp.add_flow(FP)
ScrollComp.add_flow(FlowPath(key1='d1',
key2='dd',
MdotFcn=ScrollComp.D_to_DD))
ScrollComp.add_flow(FlowPath(key1='d2',
key2='dd',
MdotFcn=ScrollComp.D_to_DD))
#Connect the callbacks for the step, endcycle, heat transfer and lump energy balance
ScrollComp.connect_callbacks(step_callback = ScrollComp.step_callback,
endcycle_callback = ScrollComp.endcycle_callback,
heat_transfer_callback = ScrollComp.heat_transfer_callback,
lumps_energy_balance_callback = ScrollComp.lump_energy_balance_callback
)
t1 = timeit.default_timer()
ScrollComp.RK45_eps = 1e-6
ScrollComp.eps_cycle = 3e-3
try:
ScrollComp.solve(key_inlet='inlet.1',
key_outlet='outlet.2',
solver_method='RK45',
OneCycle = OneCycle,
plot_every_cycle= False,
#hmin = 1e-3
eps_cycle = 3e-3
)
except BaseException as E:
print(E)
raise
print('time taken', timeit.default_timer()-t1)
del ScrollComp.FlowStorage
from PDSim.misc.hdf5 import HDF5Writer
h5 = HDF5Writer()
h5.write_to_file(ScrollComp, HDF5file)
debug_plots(ScrollComp, family='Scroll Compressor')
return ScrollComp
if __name__=='__main__':
Compressor(Scroll)