Skip to content

Latest commit

 

History

History
129 lines (92 loc) · 2.79 KB

fltalmost.md

File metadata and controls

129 lines (92 loc) · 2.79 KB

Almost

Based on https://www.youtube.com/watch?v=EymVXkPWxyc

Fermat's Last Theorem states that no three positive integers $a$, $b$, and $c$ satisfy $a^n + b^n = c^n$ for any integer value of $n$ greater than 2.

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

We have

  • a is an integer > 0
  • b is an integer > 0
  • c is an integer > 0
  • n is an integer > 2
  • a^n + b^n = c^n

If a, b, c, n satisfies the above conditions, it is notated here as (a b c FLT n)

Without loss of generality, let $a \le b$

Since addition is commutative

  • b^n + a^n = c^n

$a \le b$ or $b \le a$. so (a b c FLT n) or (b a c FLT n) satisfies this property.

a < b

If a = b, then c^n = a^n + a^n = 2 * a^n

So c = 2^(1/n) * a

But 2^(1/n) is irrational.

a < b < c

a and b are positive, so their sum is greater than both.

(This ignores the powers, which don't affect anything. Dealing with them is left as an exercise to the reader.)

$a &gt; n$

$$ \text{We have: } a, b, c \in \mathbf{N}, a < b < c, 2 < c $$

$$\begin{align} a^n + b^n &= c^n \\\ \\\ a^n &= c^n - b^n \\\ &= (c-b) \sum_{i=1}^{n}c^{n-i}b^{i-1} \\\ &> (c-b) \sum_{i=1}^{n}a^{n-i}a^{i-1} \\\ &= (c-b) \sum_{i=1}^{n}a^{n-1} \\\ &= (c-b) na^{n-1} \\\ \\\ a &> (c-b) n \\\ &> n \end{align}$$

huh!?

Am I crazy, or can we do

$$\begin{align} a^n + b^n &= c^n \\\ (a/c)^n + (b/c)^n &= 1^n \\\ \\\ (a/c) &> n \end{align}$$

Edit: this is wrong

A better bound...

In the sum, instead of replacing c and b with a, replacing with b gets

$$ \begin{align} a^n &> (c-b) nb^{n-1} \\ a &> (c-b)^{\frac{1}{n}} n^{\frac{1}{n}} b^{\frac{n-1}{n}} \end{align} $$

As $n$ approaches infinity, the right hand side approaches $b$, but $a &lt; b$. So $a$ is getting squeezed.

However, there's still plenty of room: the larger a and b are, the more room there is.

Slightly stricter bound for a

We have 0 < b < c, 2 < n. Note that the 2 < n is important for ">" in the first half, because i=2 and c^(n-i) = b^(n-i) when n-i=0

$$ \begin{align} c^n-b^n &= (c-b) \sum_{i=1}^{n}c^{n-i}b^{i-1} \\ &= (c-b) (c^{n-1} + \sum_{i=2}^{n}c^{n-i}b^{i-1}) \\ &> (c-b) (c^{n-1} + \sum_{i=2}^{n}b^{n-i}b^{i-1}) \\ &= (c-b) (c^{n-1} + \sum_{i=2}^{n}b^{n-1}) \\ &= (c-b) (c^{n-1} + (n-1)b^{n-1}) \\ \\ a^n &> (c-b) (c^{n-1} + (n-1)b^{n-1}) \\ &= (c-b) (\frac{c^{n-1}}{b^{n-1}} + n-1) b^{n-1} \\ a &> (c-b)^{\frac{1}{n}} (\frac{c^{n-1}}{b^{n-1}} + n-1)^{\frac{1}{n}} b^{\frac{n-1}{n}} \end{align} $$

$1 &lt; \frac{c}{b}^n &lt; 2$

The lower bound of 1 is trivial.

$$\begin{align} a^n &= c^n - b^n \\\ \frac{a^n}{b^n} &= \frac{c^n}{b^n} - 1 \\\ \\\ a &< b \\\ a^n &< b^n \\\ \frac{a^n}{b^n} &< 1 \\\ \frac{c^n}{b^n} - 1 &< 1 \\\ \frac{c^n}{b^n} &< 2 \\\ \end{align}$$

In other words: $$c &lt; b\sqrt[n]{2}$$

Weaker bound: $(c-b)n &lt; b$