forked from espressomd/espresso
-
Notifications
You must be signed in to change notification settings - Fork 4
/
NEWS
350 lines (246 loc) · 12.1 KB
/
NEWS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
=================
= ESPRESSO NEWS =
=================
ESPResSo 3.2
============
New user-visible features
-------------------------
* The script tools/blockfile2vtf.tcl can be used to convert ESPResSo
blockfiles into VTF files.
* Two new short-ranged nonbonded potentials have been added:
* HAT: the classical conservative DPD interaction, a simple force
ramp.
* GAUSSIAN: A Gaussian potential.
* The feature REACTIONS and the command "reaction" model a simple
chemical reaction: when a particle of the reactant type comes into
the vincinity of a particle of the catalysator type, the reactant is
transformed into a particle of the product type.
* The feature GHMC implements a generalized hybrid Monte-Carlo
thermostat.
User-visible changes
--------------------
* Removed non-working tools and samples.
* Bond angle potentials are now defined on the Tcl-level instead of on
the feature-level, i.e. to choose the type of the bond-angle
potential, you should use the corresponding Tcl command instead of a
feature. To allow for any bond angle potential, activate the feature
BOND_ANGLE.
* We have removed the forcecaps for the different interaction
types. Instead, there is now a single global forcecap, plus it is
possible to define individual forcecaps on a particle pair level.
ESPResSo 3.1.2
==============
* Added Tcl-scripts of the tutorials to the distribution.
* Added forgotten part of the UG on the correlators.
* Removed buggy readline code tclline.tcl. Fixes #36432.
* Removed Ewald code from ESPResSo that never worked and was never
documented.
ESPResSo 3.1.1
==============
* The Espresso binary now outputs the header to STDERR instead of STDOUT.
* Fixed bugs #36431, #37120, #37214, #37374, #37306, #35767.
* Fixed generation of myconfig-sample.h.
* Fixed AdResS example.
* Added new logo.
* The documentation sources are now left out of the distribution
package, only the PDF files are included. This fixes problems when
calling "make doc" in a distribution package (#35958).
ESPResSo 3.1.0
==============
New user-visible features
-------------------------
* While so far, observables were typically computed and stored on the
Tcl-level after a call to "integrate", a new observable concept now
allows to compute observables while the C-core is running. This is
particularly useful for observables that have to be computed very
frequently, as for example in the case of time-correlations
(e.g. the RMSD of particles).
The new concept is documented in the User's Guide in Section 8.4
("Correlations and observables").
* The new feature COLLISION_DETECTION allows to dynamically add new
bonds between colliding particles.
* Added new constraint and LB boundary condition "rhomboid" that
allows to create arbitrary rhomboids. When combining several
rhomboids, almost any shape of a constraint is doable.
* Lattice-Boltzmann:
* nonzero velocity boundary conditions are available
* forces on boundaries can be calculated
* wall constraints work
* Added basic tutorial on Lennard-Jones liquid, made second tutorial
(simple charged systems) better available (all in doc/tutorials/)
* The ICC* algorithm is now ready to use. It is used with the command
"iccp3m" and allows to take into account dielectric boundaries of
arbitrary shape. The command "dielectric" allows to create the
boundaries in a similar fashion as constraints and lbboundaries.
User-visible changes
--------------------
* The blockfile C-library has been removed. In theory, there was a
library usable from C that could be used to read and write
blockfiles. Since several years, it was broken, so apparently it
wasn't used anyway.
* The NPT barostat now works in many more combinations of
algorithms than so far (e.g. MMM2D, ELC, ...)
* The Lattice-Boltzmann CPU implementation now works when Verlet lists
are used.
* Removed unneccessary overhead of neutral particles in simulations
with P3M.
* Removed unneccessary overhead of activated but ununsed interaction
features.
* Some changes in the Verlet list construction yield a performance
gain of up to 90% in systems where the interaction ranges differ
significantly, or where some particle types do not interact at all
(phantom particles).
* Renamed Coulomb method maggs to MEMD (inter coulomb maggs => inter
coulomb memd).
Changes visible for developers
------------------------------
* code_info does now not only show the main package version, but also
the exact git commit id and whether or not the code was modified
("dirty"). Also, the distribution package provides this information.
* The various features are now defined in the file
src/features.def. From this file, a couple of Python scripts
automatically generate myconfig-sample.h and what was config.h and
config.c. Also, this allows to check whether all features are
documented, tested and defined.
Note that due to this change, ESPResSo development now requires
Python.
* The domain decomposition, P3M, LB and MEMD now use MPI cartesian
communicators. This will hopefully speed up the simulations on some
platforms.
* Split interaction code into .c and .h files.
* Split off the Tcl interface (into src/tcl/) from the C core code (in
src/)
* Added ESPResSo logos, cover issue images, and some other material to
the repo (doc/).
* Started new LaTeX-Developer's Guide (DG), and moved all "Related
pages" from the doxygen docs. The doxygen stuff still exists and is
available via doc/doxygen/.
ESPResSo 3.0.2
==============
* Fixed features ADRESS and VIRTUAL_SITES_COM that did not work for a while.
* Fixed bugs #33489, #34238.
* Fixed a few bugs that were never reported via the bug tracker,
mainly in the documentation.
ESPResSo 3.0.1
==============
* Fixed bugs #33375,#33376,#32005
* Fixed a few bugs that were never reported via the bug tracker.
ESPResSo 3.0.0
===============
User-visible changes
--------------------
* The Lattice-Boltzmann implementation in ESPResSo has been
significantly overhauled and it has been documented for the first
time.
* A CUDA implementation for NVIDIA GPUs of the Lattice-Boltzmann
algorithm is included.
* The Maggs algorithm (or Maxwell Equation Molecular Dynamics, MEMD)
for computing electrostatic interactions has been included and
documented. The algorithm is a fast and scalable alternative for P3M
or other such algorithms.
* The P3M algorithm for electrostatic and dipolar (magnetostatic)
interactions has been extended.
* Electrostatic P3M allows for non-cubic boxes.
* The electrostatic P3M pressure tensor is computed correctly now.
* Dipolar P3M has been parallelized (electrostatics P3M was
parallelized already!)
* The MDLC method (magnetic dipolar layer correction) has been
parallelized.
* The virtual sites feature has been significantly extended and
documented. Virtual sites are particles that can interact with
other particles but whose positions are not integrated via the
normal integrator. Instead, the positions are determined by the
positions of other, "real" particles. Virtual sites can either be
set into the center of mass of a set of real particles (feature
VIRTUAL_SITES_COM), or it can be set to an arbitrary location
relative to another particle (VIRTUAL_SITES_RELATIVE). This allows
to create rigid structures within ESPResSo.
* The User's Guide has been significantly updated and extended.
* Some constraints can now be made penetrable and reflecting.
* "Espresso" is now the actual binary instead of a wrapper shell
script that automatically calls MPI. This means that it is necessary
to call "mpiexec" or "mpirun" youself to run ESPResSo in an MPI
environment.
* The directory where the scripts are installed is now compiled into
the binary, i.e. it is not necessary anymore to set the environment
variable ESPRESSO_SCRIPTS. Still, it will heed the environment
variable if it is set.
* The build system has been overhauled and simplified.
* Running "make check" will run the testsuite with a single number
of processors, which gives a significant speedup. "configure" will
try to determine the available number of CPUs/cores. If it can't,
it will use 1 by default.
* MPI recognition has changed. The build system first needs to find
out how to compile an MPI binary. If it doesn't find out
automatically, you can help it by setting the variable MPICC or
LDFLAGS correctly. Furthermore, it needs to know how to run an MPI
binary. If "mpiexec" is available, everything is fine. If it is
not, you can provide a script "mympiexec.sh" that behaves like
mpiexec.
* So far, when you built in the source directory, all files ended up
in a subdirectory "obj.XXX", where XXX was some description of the
processor you used. This non-standard behavior has been removed.
Instead, the files are generated directly in the source directory
when compiling there.
If you want to compile several binaries from a single source
directory, you can use build directories as described in the
User's Guide.
* A number of functions have been deprecated, as they are not
maintained anymore. Plase do not use them in your code and replace
them with appropriate alternatives if you use them in your code!
The following functions are deprecated:
checkpoint_*, polyBlock*, calcOb*, calcObs*, plot*, polyConf*
* FFTW2 is no longer supported.
Organizational changes
----------------------
* The home page of ESPReSso has been relocated to
http://espressomd.org
* The mailing list and source code repository have been moved to GNU
Savannah. Furthermore, we have a bugtracker now. The development
homepage is
https://savannah.nongnu.org/projects/espressomd
* The maintenance of ESPResSo has been relocated from Torsten Stühn
from the Max-Planck-Institute for Polymer Research at Mainz to
Olaf Lenz <olenz@icp.uni-stuttgart.de>
from the Institute for Computational Physics at Stuttgart University.
* The old "ESPResSo license" was removed, as it was not really a
license, but only contained additions that were either non-binding
or already contained in the GPL.
* The license was upgraded to GPLv3.
* The package was adapted to GNU standards. RELEASE_NOTES was moved
aside to old/RELEASE_NOTES, instead, we will have the files
ChangeLog and NEWS. NEWS will contain a description of the most
noteworthy changes since the last release.
Changes visible for developers
------------------------------
* The source code repository has been moved from CVS to git, and it
has moved to GNU Savannah (see above) and github. The main
development code repository is
https://github.com/espressomd/espresso
* We have an automated build server (Jenkins) at
http://espressomd.org/jenkins/
that automatically builds and checks the ESPResSo package whenever
new code is pushed to the main development repository. Every night,
a number of additional tests are performed
* The .c/.h/.cu source files have been moved to the subdirectory
src/. The Espresso binary is still placed in the top-level build
directory. myconfig.h may be placed eitther in the src/ or top-level
dirs.
* The automatically generated files configure and Makefile.in are not
part of the repository anymore. A developer can generate them using
the command "bootstrap.sh", which requires the GNU autotools
(autoconf and automake).
* All functions that represent the interface to Tcl should follow the
same naming conventions. These are described here:
git log 3d4d6f31655a8d96e47c8f80e10f27f6b764f8df
* Adding a new MPI function to communication.c has been significantly
simplified. It is enough to add the function in the C file at a
single location.
========================================================================
For older changes to ESPResSo, see ./old/RELEASE_NOTES.
========================================================================
Copyright (C) 2010,2011,2012 The ESPResSo project
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.