-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear-regression.js
47 lines (40 loc) · 1.35 KB
/
linear-regression.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function linear_regression(points){
//points: [{x,y},{x,y},...{x,y}]
let N = points.length; //number of points
if(N<3){ throw new Error("N<3 points"); }
//arrays of points
let xi = points.map(p=>p.x); //array x
let yi = points.map(p=>p.y); //array y
let xi_sq = xi.map(x=>x*x); //array x squared
let yi_sq = yi.map(y=>y*y); //array y squared
let xiyi = points.map(p=>{ //array x·y
return p.x*p.y;
});
//sums of arrays
let xi_sum = xi.reduce((p,c)=>p+c,0); //sum of x array
let yi_sum = yi.reduce((p,c)=>p+c,0); //sum of y array
let xi_sq_sum = xi_sq.reduce((p,c)=>p+c,0); //sum of x squared array
let yi_sq_sum = yi_sq.reduce((p,c)=>p+c,0); //sum of y squared array
let xiyi_sum = xiyi.reduce((p,c)=>p+c,0); //sum of x·y array
//compute m (slope) and n (intercept) as (y = mx + n)
let m = (N*(xiyi_sum) - yi_sum*xi_sum)/(N*xi_sq_sum - xi_sum*xi_sum);
let n = (yi_sum - m*xi_sum)/N;
//compute r squared
let r_squared = Math.pow(N*xiyi_sum - xi_sum*yi_sum, 2)/((N*xi_sq_sum - Math.pow(xi_sum,2))*(N*yi_sq_sum - Math.pow(yi_sum,2)));
//end
return {m, n, r_squared};
}
//TEST
let points=[
{x:30, y:25},
{x:28, y:30},
{x:32, y:27},
{x:25, y:40},
{x:25, y:42},
{x:25, y:40},
{x:22, y:50},
{x:24, y:45},
{x:35, y:30},
{x:40, y:25},
];
console.log(linear_regression(points));