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To build more expressive distributions
p(z;|z<;) and q(z;|x, z;) that learn
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Experiments

¢ SOTA results on binary and natural images
compared to hierarchical VAEs (BIVA
NVAE, Very Deep VAE,...).

¢ Significantly fewer layers needed.
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h 1 = P q
oyt [H, W, U] o l K o1 P “* Significantly less training & inference time.
— X = softmax Depth-wise Attention keeps the upper variational layers active (KL >>0) and mitigates posterior collapse.
[H, W, 1,l'] ‘ Locally connected variational layer VS Strongly connected variational layer (ours) Discussion
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» First attention-driven framework for variational
inference in deep probabilistic models.

» Attention for better utilization of the latent space.

» Factorized intra-layer and inter-layer attention
operations.

» Sparse and highly structured attention patterns.
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