forked from whybeyoung/better-disco-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
362 lines (317 loc) · 13.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#!/usr/bin/env python
# coding:utf-8
"""
@author: nivic ybyang7
@license: Apache Licence
@file: model
@time: 2023/01/07
@contact: ybyang7@iflytek.com
@site:
@software: PyCharm
# code is far away from bugs with the god animal protecting
I love animals. They taste delicious.
┏┓ ┏┓
┏┛┻━━━┛┻┓
┃ ☃ ┃
┃ ┳┛ ┗┳ ┃
┃ ┻ ┃
┗━┓ ┏━┛
┃ ┗━━━┓
┃ 神兽保佑 ┣┓
┃ 永无BUG! ┏┛
┗┓┓┏━┳┓┏┛
┃┫┫ ┃┫┫
┗┻┛ ┗┻┛
"""
# Copyright (c) 2022. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
# Morbi non lorem porttitor neque feugiat blandit. Ut vitae ipsum eget quam lacinia accumsan.
# Etiam sed turpis ac ipsum condimentum fringilla. Maecenas magna.
# Proin dapibus sapien vel ante. Aliquam erat volutpat. Pellentesque sagittis ligula eget metus.
# Vestibulum commodo. Ut rhoncus gravida arcu.
import torch
from dataclasses import dataclass
from functools import partial
from resize_right import resize
from torch import nn
from torch.nn import functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from ness_functions import resample
import math
from secondary import *
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, skip_augs=False):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.skip_augs = skip_augs
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
def forward(self, input):
input = T.Pad(input.shape[2] // 4, fill=0)(input)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
cutouts = []
for ch in range(self.cutn):
if ch > self.cutn - self.cutn // 4:
cutout = input.clone()
else:
size = int(
max_size * torch.zeros(1, ).normal_(mean=.8, std=.3).clip(float(self.cut_size / max_size), 1.))
offsetx = torch.randint(0, abs(sideX - size + 1), ())
offsety = torch.randint(0, abs(sideY - size + 1), ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if not self.skip_augs:
cutout = self.augs(cutout)
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
del cutout
cutouts = torch.cat(cutouts, dim=0)
return cutouts
class MakeCutoutsDango(nn.Module):
def __init__(self, args,padargs, cut_size,
Overview=4,
InnerCrop=0, IC_Size_Pow=0.5, IC_Grey_P=0.2,cutout_debug=False
):
super().__init__()
self.padargs = padargs
self.cutout_debug = cutout_debug
self.cut_size = cut_size
self.Overview = Overview
self.InnerCrop = InnerCrop
self.IC_Size_Pow = IC_Size_Pow
self.IC_Grey_P = IC_Grey_P
if args.animation_mode == 'None':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation=T.InterpolationMode.BILINEAR),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.1),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
elif args.animation_mode == 'Video Input':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
])
elif args.animation_mode == '2D' or args.animation_mode == '3D':
self.augs = T.Compose([
T.RandomHorizontalFlip(p=0.4),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=10, translate=(0.05, 0.05), interpolation=T.InterpolationMode.BILINEAR),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.1),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.3),
])
self.skip_augs = args.skip_augs
def forward(self, input):
cutouts = []
gray = T.Grayscale(3)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
l_size = max(sideX, sideY)
output_shape = [1, 3, self.cut_size, self.cut_size]
output_shape_2 = [1, 3, self.cut_size + 2, self.cut_size + 2]
pad_input = F.pad(input, (
(sideY - max_size) // 2, (sideY - max_size) // 2, (sideX - max_size) // 2, (sideX - max_size) // 2),
**self.padargs)
cutout = resize(pad_input, out_shape=output_shape)
if self.Overview > 0:
if self.Overview <= 4:
if self.Overview >= 1:
cutouts.append(cutout)
if self.Overview >= 2:
cutouts.append(gray(cutout))
if self.Overview >= 3:
cutouts.append(TF.hflip(cutout))
if self.Overview == 4:
cutouts.append(gray(TF.hflip(cutout)))
else:
cutout = resize(pad_input, out_shape=output_shape)
for _ in range(self.Overview):
cutouts.append(cutout)
if self.cutout_debug:
TF.to_pil_image(cutouts[0].clamp(0, 1).squeeze(0)).save("cutout_overview0.jpg", quality=99)
if self.InnerCrop > 0:
for i in range(self.InnerCrop):
size = int(torch.rand([]) ** self.IC_Size_Pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
if i <= int(self.IC_Grey_P * self.InnerCrop):
cutout = gray(cutout)
cutout = resize(cutout, out_shape=output_shape)
cutouts.append(cutout)
if self.cutout_debug:
TF.to_pil_image(cutouts[-1].clamp(0, 1).squeeze(0)).save("cutout_InnerCrop.jpg", quality=99)
cutouts = torch.cat(cutouts)
if self.skip_augs is not True: cutouts = self.augs(cutouts)
return cutouts
@dataclass
class DiffusionOutput:
v: torch.Tensor
pred: torch.Tensor
eps: torch.Tensor
class ConvBlock(nn.Sequential):
def __init__(self, c_in, c_out):
super().__init__(
nn.Conv2d(c_in, c_out, 3, padding=1),
nn.ReLU(inplace=True),
)
class SkipBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return torch.cat([self.main(input), self.skip(input)], dim=1)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
class SecondaryDiffusionImageNet(nn.Module):
def __init__(self):
super().__init__()
c = 64 # The base channel count
self.timestep_embed = FourierFeatures(1, 16)
self.net = nn.Sequential(
ConvBlock(3 + 16, c),
ConvBlock(c, c),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c, c * 2),
ConvBlock(c * 2, c * 2),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c * 2, c * 4),
ConvBlock(c * 4, c * 4),
SkipBlock([
nn.AvgPool2d(2),
ConvBlock(c * 4, c * 8),
ConvBlock(c * 8, c * 4),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 8, c * 4),
ConvBlock(c * 4, c * 2),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 4, c * 2),
ConvBlock(c * 2, c),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
]),
ConvBlock(c * 2, c),
nn.Conv2d(c, 3, 3, padding=1),
)
def forward(self, input, t):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
v = self.net(torch.cat([input, timestep_embed], dim=1))
alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
pred = input * alphas - v * sigmas
eps = input * sigmas + v * alphas
return DiffusionOutput(v, pred, eps)
class SecondaryDiffusionImageNet2(nn.Module):
def __init__(self):
super().__init__()
c = 64 # The base channel count
cs = [c, c * 2, c * 2, c * 4, c * 4, c * 8]
self.timestep_embed = FourierFeatures(1, 16)
self.down = nn.AvgPool2d(2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.net = nn.Sequential(
ConvBlock(3 + 16, cs[0]),
ConvBlock(cs[0], cs[0]),
SkipBlock([
self.down,
ConvBlock(cs[0], cs[1]),
ConvBlock(cs[1], cs[1]),
SkipBlock([
self.down,
ConvBlock(cs[1], cs[2]),
ConvBlock(cs[2], cs[2]),
SkipBlock([
self.down,
ConvBlock(cs[2], cs[3]),
ConvBlock(cs[3], cs[3]),
SkipBlock([
self.down,
ConvBlock(cs[3], cs[4]),
ConvBlock(cs[4], cs[4]),
SkipBlock([
self.down,
ConvBlock(cs[4], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[5]),
ConvBlock(cs[5], cs[4]),
self.up,
]),
ConvBlock(cs[4] * 2, cs[4]),
ConvBlock(cs[4], cs[3]),
self.up,
]),
ConvBlock(cs[3] * 2, cs[3]),
ConvBlock(cs[3], cs[2]),
self.up,
]),
ConvBlock(cs[2] * 2, cs[2]),
ConvBlock(cs[2], cs[1]),
self.up,
]),
ConvBlock(cs[1] * 2, cs[1]),
ConvBlock(cs[1], cs[0]),
self.up,
]),
ConvBlock(cs[0] * 2, cs[0]),
nn.Conv2d(cs[0], 3, 3, padding=1),
)
def forward(self, input, t):
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
v = self.net(torch.cat([input, timestep_embed], dim=1))
alphas, sigmas = map(partial(append_dims, n=v.ndim), t_to_alpha_sigma(t))
pred = input * alphas - v * sigmas
eps = input * sigmas + v * alphas
return DiffusionOutput(v, pred, eps)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff ** 2 + y_diff ** 2).mean([1, 2, 3])
def range_loss(input):
return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3])
def symmetry_transformation_fn(x,use_horizontal_symmetry=False, use_vertical_symmetry=False):
if use_horizontal_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :, :w // 2], torch.flip(x[:, :, :, :w // 2], [-1])), -1)
print("horizontal symmetry applied")
if use_vertical_symmetry:
[n, c, h, w] = x.size()
x = torch.concat((x[:, :, :h // 2, :], torch.flip(x[:, :, :h // 2, :], [-2])), -2)
print("vertical symmetry applied")
return x