-
Notifications
You must be signed in to change notification settings - Fork 0
/
style_transfer.py
206 lines (136 loc) · 5.68 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from PIL import Image
import asyncio
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import copy
CNN = ''
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
self.target = target.detach()
self.loss = F.mse_loss(self.target, self.target )
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
class StyleLossForSingleImage(nn.Module):
def __init__(self, target_feature):
super(StyleLossForSingleImage, self).__init__()
self.target = self.gram_matrix(target_feature).detach()
self.loss = F.mse_loss(self.target, self.target)
def forward(self, input):
G = self.gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
def gram_matrix(self, input):
batch_size , h, w, f_map_num = input.size()
features = input.view(batch_size * h, w * f_map_num)
G = torch.mm(features, features.t())
return G.div(batch_size * h * w * f_map_num)
class Normalization(nn.Module):
def __init__(self, device):
super(Normalization, self).__init__()
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
self.mean = mean.clone().detach().view(-1, 1, 1)
self.std = std.clone().detach().view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
class Simple_style_transfer:
def __init__(self, style_img, content_img, imsize = 1024, num_steps=500,
style_weight=100000, content_weight=1):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.imsize = imsize
self.style_img = self.image_loader(style_img)
self.content_img = self.image_loader(content_img)
self.input_img = self.content_img.clone()
self.content_layers = ['conv_4']
self.style_layers = ['conv_2','conv_3', 'conv_4', 'conv_5']
self.num_steps = num_steps
self.style_weight = style_weight
self.content_weight = content_weight
def image_loader(self, image_name):
loader = transforms.Compose([
transforms.Resize(self.imsize),
transforms.CenterCrop(self.imsize),
transforms.ToTensor()])
image = Image.open(image_name)
image = loader(image).unsqueeze(0)
return image.to(self.device, torch.float)
def get_style_model_and_losses(self):
cnn = copy.deepcopy(CNN)
normalization = Normalization(self.device).to(self.device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in self.content_layers:
target = model(self.content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in self.style_layers:
target_feature = model(self.style_img).detach()
style_loss = StyleLossForSingleImage(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLossForSingleImage):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def get_input_optimizer(self):
optimizer = optim.LBFGS([self.input_img.requires_grad_()])
return optimizer
async def test(self):
num = 0
while num < 20:
num += 1
print(num)
await asyncio.sleep(1)
return num
async def transfer(self):
global CNN
if CNN == '':
CNN = torch.load('my_models/vgg19.pth',).to(self.device).eval()
model, style_losses, content_losses = self.get_style_model_and_losses()
optimizer = self.get_input_optimizer()
run = [0]
while run[0] <= self.num_steps:
print(run[0])
await asyncio.sleep(0)
def closure():
self.input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(self.input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= self.style_weight
content_score *= self.content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
return style_score + content_score
optimizer.step(closure)
self.input_img.data.clamp_(0, 1)
return self.input_img