-
Notifications
You must be signed in to change notification settings - Fork 29
/
wgan_EHR.py
364 lines (343 loc) · 19.1 KB
/
wgan_EHR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import time
import argparse
import importlib
import tensorflow as tf
import matplotlib
matplotlib.use('Agg')
import matplotlib as plt
import cPickle as pickle
from numpy import arange, random, ceil, mean, array, count_nonzero, zeros, eye
from utilize import data_readf, c2b, c2bcolwise, splitbycol, gene_check, statistics, dwp, load_MIMICIII, fig_add_noise
import logging # these 2 lines are used in GPU3
logging.getLogger("tensorflow").setLevel(logging.ERROR)
from visualize import *
class MIMIC_WGAN(object):
def __init__(self, g_net, d_net, ae_net, z_sampler, decompressDims, aeActivation, dataType, _VALIDATION_RATIO, top, batchSize, cilpc, n_discriminator_update, learning_rate, adj, db): # changed
self.g_net = g_net
self.d_net = d_net
self.ae_net = ae_net
self.z_sampler = z_sampler
self.x_dim = self.d_net.inputDim
self.z_dim = self.g_net.randomDim
self.decompressDims = decompressDims
self.aeActivation = aeActivation
self.dataType = dataType
self.x = tf.placeholder(tf.float32, [None, self.x_dim], name='x')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.keep_prob = tf.placeholder('float')
self._VALIDATION_RATIO = _VALIDATION_RATIO
self.top = top
self.batchSize = batchSize
self.cilpc = cilpc
self.n_discriminator_update = n_discriminator_update
self.learning_rate = learning_rate
self.adj = adj
self.db = db
self.loss_ae, self.decodeVariables = self.ae_net(self.x) # AE, autoencoder
self.x_ = self.g_net(self.z) # G, get generated data
self.d_loss, self.g_loss, self.y_hat_real, self.y_hat_fake, _ = self.d_net(self.x, self.x_, self.keep_prob, self.decodeVariables, reuse=False) # D, in the beginning, no reuse
# self.trainX, _, _ = data_readf(self.top) # load whole dataset, self.top is dummy here
self.trainX, self.testX, _ = load_MIMICIII(self.dataType, self._VALIDATION_RATIO, self.top) # load whole dataset, self.top is dummy here
self.nBatches = int(ceil(float(self.trainX.shape[0]) / float(self.batchSize))) # number of batch if using training set
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): # medGAN version
# self.optimize_ae = tf.train.AdamOptimizer().minimize(self.loss_ae + sum(all_regs), var_list=self.ae_net.vars)
# self.d_rmsprop = tf.train.AdamOptimizer().minimize(self.d_loss + sum(all_regs), var_list=self.d_net.vars) # non-DP case
# self.g_rmsprop = tf.train.AdamOptimizer().minimize(self.g_loss + sum(all_regs), var_list=self.g_net.vars + self.decodeVariables.values())
self.reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l1_regularizer(2.5e-5),weights_list=[var for var in tf.global_variables() if 'W' in var.name])
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): # WGAN version, with medGAN consideration
self.optimize_ae = tf.train.AdamOptimizer().minimize(self.loss_ae + sum(all_regs), var_list=self.ae_net.vars)
# self.d_rmsprop = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate) # DP case
# grads_and_vars = self.d_rmsprop.compute_gradients(self.d_loss + self.reg, var_list=self.d_net.vars)
# dp_grads_and_vars = [] # noisy version
# for gv in grads_and_vars: # for each pair
# g = gv[0] # get the gradient, type in loop one: Tensor("gradients/AddN_37:0", shape=(4, 4, 1, 64), dtype=float32)
# #print g # shape of all vars
# if g is not None: # skip None case
# g = self.dpnoise(g, self.batchSize) # add noise on the tensor, type in loop one: Tensor("Add:0", shape=(4, 4, 1, 64), dtype=float32)
# dp_grads_and_vars.append((g, gv[1]))
# self.d_rmsprop_new = self.d_rmsprop.apply_gradients(dp_grads_and_vars) # should assign to a new optimizer
self.d_rmsprop = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate) \
.minimize(self.d_loss + self.reg, var_list=self.d_net.vars) # non-DP case
self.g_rmsprop = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate) \
.minimize(self.g_loss + self.reg, var_list=self.g_net.vars+self.decodeVariables.values())
self.d_clip = [v.assign(tf.clip_by_value(v, -1*self.cilpc, self.cilpc)) for v in self.d_net.vars]
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.sess.run(tf.initialize_all_variables())
self.g_loss_store = [] # store loss of generator
self.d_loss_store = [] # store loss of discriminator
self.wdis_store = [] # store Wasserstein distance, new added
def train_autoencoder(self, pretrainEpochs, pretrainBatchSize):
'''Pre-training autoencoder'''
nTrainBatches = int(ceil(float(self.trainX.shape[0])) / float(pretrainBatchSize))
# nTestBatches = int(ceil(float(self.testX.shape[0])) / float(pretrainBatchSize))
for epoch in range(pretrainEpochs):
idx = random.permutation(self.trainX.shape[0]) # shuffle training data in each epoch
trainLossVec = []
for i in range(nTrainBatches):
batchX = self.trainX[idx[i * pretrainBatchSize:(i + 1) * pretrainBatchSize]]
randomZ = self.z_sampler(batchSize, self.z_dim)
_, loss = self.sess.run([self.optimize_ae, self.loss_ae], feed_dict={self.x: batchX, self.z: randomZ})
trainLossVec.append(loss)
# idx = random.permutation(self.testX.shape[0])
# testLossVec = []
# for i in range(nTestBatches):
# batchX = self.testX[idx[i * pretrainBatchSize:(i + 1) * pretrainBatchSize]]
# loss = self.sess.run(self.loss_ae, feed_dict={self.x: batchX})
# testLossVec.append(loss)
print 'Pretrain_Epoch:%d, trainLoss:%f' % (epoch, mean(trainLossVec))
def train(self, nEpochs, batchSize):
start_time = time.time()
idx = arange(self.trainX.shape[0])
for epoch in range(nEpochs):
for i in range(self.nBatches):
rd_loss = 0
rg_loss = 0
for _ in range(self.n_discriminator_update): # train discriminator
batchIdx = random.choice(idx, size=batchSize, replace=False)
batchX = self.trainX[batchIdx]
randomZ = self.z_sampler(batchSize, self.z_dim)
# _, rd_loss = self.sess.run([self.d_rmsprop_new, self.d_loss], feed_dict={self.x: batchX, self.z: randomZ, self.keep_prob: 1.0}) # DP case
_, rd_loss = self.sess.run([self.d_rmsprop, self.d_loss], feed_dict={self.x: batchX, self.z: randomZ, self.keep_prob: 1.0}) # non-DP case
self.sess.run(self.d_clip)
randomZ = self.z_sampler(batchSize, self.z_dim) # train generator
_, rg_loss = self.sess.run([self.g_rmsprop, self.g_loss], feed_dict={self.x: batchX, self.z: randomZ, self.keep_prob: 1.0})
if i % 50 == 0: # print out loss
print('Time [%5.4f] d_loss [%.4f] g_loss [%.4f]' %
(time.time() - start_time, rd_loss, rg_loss))
# store rd_loss and rg_loss, new added
self.g_loss_store.append(rg_loss) # g_loss will decrease, here is not self.g_loss nor self.g_loss_reg
self.d_loss_store.append(rd_loss) # d_loss will increase
self.wdis_store.append(-1*rd_loss) # Wasserstein distance will decrease
z_sample = self.z_sampler(self.trainX.shape[0], self.z_dim) # generate EHR from generator, after finish training
x_gene = self.sess.run(self.x_, feed_dict={self.z: z_sample})
dec = self.decoder(x_gene)
x_gene_dec = self.sess.run(dec) # generated data
# x_gene_dec = c2bcolwise(self.trainX, x_gene_dec, self.adj) # binarize generated data by setting the same portion of elements to 1 as the training set, these elements have highest original value
# print "please check this part, make sure it is correct"
# print self.trainX.shape, x_gene.shape, x_gene_dec.shape, self.testX.shape
return self.trainX, x_gene_dec
def decoder(self, x_fake): # this function is specifically to make sure the output of generator goes through the decoder
tempVec = x_fake
i = 0
for _ in self.decompressDims[:-1]:
tempVec = self.aeActivation(tf.add(tf.matmul(tempVec, self.decodeVariables['aed_W_' + str(i)]), self.decodeVariables['aed_b_' + str(i)]))
i += 1
if self.dataType == 'binary':
x_decoded = tf.nn.sigmoid(tf.add(tf.matmul(tempVec, self.decodeVariables['aed_W_' + str(i)]), self.decodeVariables['aed_b_' + str(i)]))
else:
x_decoded = tf.nn.relu(tf.add(tf.matmul(tempVec, self.decodeVariables['aed_W_' + str(i)]), self.decodeVariables['aed_b_' + str(i)]))
return x_decoded
def dpnoise(self, tensor, batchSize):
'''add noise to tensor'''
s = tensor.get_shape().as_list() # get shape of the tensor
sigma = 6000.0 # assign it manually
cg = 0.0
rt = tf.random_normal(s, mean=0.0, stddev=sigma * cg)
t = tf.add(tensor, tf.scalar_mul((1.0 / batchSize), rt))
return t
def loss_store2(self, x_train, x_gene):
with open('./result/genefinalfig/x_train.pickle', 'wb') as fp:
pickle.dump(x_train, fp)
with open('./result/genefinalfig/generated.pickle', 'wb') as fp:
pickle.dump(x_gene, fp)
bins = 100
plt.hist(x_gene, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of distribution of generated data')
plt.xlabel('Generated data value')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/WGAN-Generated-data-distribution.jpg')
plt.close()
with open('./result/lossfig/wdis.pickle', 'wb') as fp:
pickle.dump(self.wdis_store, fp)
t = arange(len(self.wdis_store))
plt.plot(t, self.wdis_store, 'r--')
plt.xlabel('Iterations')
plt.ylabel('Wasserstein distance')
plt.savefig('./result/lossfig/WGAN-W-distance.jpg')
plt.close()
rv_pre, gv_pre, rv_pro, gv_pro = dwp(x_train, x_gene, self.testX, self.db)
print 'Totally ' + str(len(rv_pre)) + ' of coordinates are left'
with open('./result/genefinalfig/rv_pre.pickle', 'wb') as fp:
pickle.dump(rv_pre, fp)
with open('./result/genefinalfig/gv_pre.pickle', 'wb') as fp:
pickle.dump(gv_pre, fp)
with open('./result/genefinalfig/rv_pro.pickle', 'wb') as fp:
pickle.dump(rv_pro, fp)
with open('./result/genefinalfig/gv_pro.pickle', 'wb') as fp:
pickle.dump(gv_pro, fp)
rv_pre, gv_pre, rv_pro, gv_pro = fig_add_noise(rv_pre), fig_add_noise(gv_pre), fig_add_noise(rv_pro), fig_add_noise(gv_pro)
plt.scatter(rv_pre, gv_pre)
plt.title('Dimension-wise prediction, lr')
plt.xlabel('Real data')
plt.ylabel('Generated data')
plt.savefig('./result/genefinalfig/WGAN-dim-wise-prediction.jpg')
plt.close()
plt.scatter(rv_pro, gv_pro)
plt.title('Dimension-wise probability, lr')
plt.xlabel('Real data')
plt.ylabel('Generated data')
plt.savefig('./result/genefinalfig/WGAN-dim-wise-probability.jpg')
plt.close()
def loss_store(self, x_train, x_gene):
'''store everything new added'''
with open('./result/genefinalfig/generated.pickle', 'wb') as fp:
pickle.dump(x_gene, fp)
bins = 100
plt.hist(x_gene, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of distribution of generated data')
plt.xlabel('Generated data value')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/generated_value.jpg')
plt.close()
with open('./result/lossfig/wdis.pickle', 'wb') as fp:
pickle.dump(self.wdis_store, fp)
t = arange(len(self.wdis_store))
plt.plot(t, self.wdis_store, 'r--')
plt.xlabel('Iterations')
plt.ylabel('Wasserstein distance')
plt.savefig('./result/lossfig/wdis.jpg')
plt.close()
precision_r_all = []
precision_g_all = []
recall_r_all = []
recall_g_all = []
acc_r_all = []
acc_g_all = []
f1score_r_all = []
f1score_g_all = []
auc_r_all = []
auc_g_all = []
MIMIC_data, dim_data = x_train, len(x_train[0])
for col in range(dim_data):
print col
trainX, testX = splitbycol(self.dataType, self._VALIDATION_RATIO, col, MIMIC_data)
if trainX == []:
print "skip this coordinate"
continue
geneX = gene_check(col, x_gene) # process generated data by column
if geneX == []:
print "skip this coordinate"
continue
precision_r, precision_g, recall_r, recall_g, acc_r, acc_g, f1score_r, f1score_g, auc_r, auc_g = statistics(trainX, geneX, testX, col)
if precision_r == []:
print "skip this coordinate"
continue
precision_r_all.append(precision_r)
precision_g_all.append(precision_g)
recall_r_all.append(recall_r)
recall_g_all.append(recall_g)
acc_r_all.append(acc_r)
acc_g_all.append(acc_g)
f1score_r_all.append(f1score_r)
f1score_g_all.append(f1score_g)
auc_r_all.append(auc_r)
auc_g_all.append(auc_g)
plt.hist(precision_r_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of precision on each dimension of training data, lr')
plt.xlabel('Precision (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_precision_r.jpg')
plt.close()
plt.hist(precision_g_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of precision on each dimension of generated data, lr')
plt.xlabel('Precision (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_precision_g.jpg')
plt.close()
plt.hist(recall_r_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of recall on each dimension of training data, lr')
plt.xlabel('Recall (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_recall_r.jpg')
plt.close()
plt.hist(recall_g_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of recall on each dimension of generated data, lr')
plt.xlabel('Recall (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_recall_g.jpg')
plt.close()
plt.hist(acc_r_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of accuracy on each dimension of training data, lr')
plt.xlabel('Accuracy (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_acc_r.jpg')
plt.close()
plt.hist(acc_g_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of accuracy on each dimension of generated data, lr')
plt.xlabel('Accuracy (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_acc_g.jpg')
plt.close()
plt.hist(f1score_r_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of f1score on each dimension of training data, lr')
plt.xlabel('f1score (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_f1score_r.jpg')
plt.close()
plt.hist(f1score_g_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of f1score on each dimension of generated data, lr')
plt.xlabel('f1score (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_f1score_g.jpg')
plt.close()
plt.hist(auc_r_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of AUC on each dimension of training data, lr')
plt.xlabel('AUC (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_AUC_r.jpg')
plt.close()
plt.hist(auc_g_all, bins, facecolor='red', alpha=0.5)
plt.title('Histogram of AUC on each dimension of generated data, lr')
plt.xlabel('AUC (total number: ' + str(len(precision_r_all)) + ' )')
plt.ylabel('Frequency')
plt.savefig('./result/genefinalfig/hist_AUC_g.jpg')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('')
parser.add_argument('--data', type=str, default='MIMIC-III')
parser.add_argument('--model', type=str, default='fc')
parser.add_argument('--gpus', type=str, default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
data = importlib.import_module(args.data) # from parser
model = importlib.import_module(args.data + '.' + args.model)
# some parameters
dataType = 'binary'
inputDim = 1071 # 1071 for original data, other: 1071 (in paper), 512, 64
embeddingDim = 128
randomDim = 128
generatorDims = list((128, 128)) + [embeddingDim]
discriminatorDims = (256, 128, 1)
compressDims = list(()) + [embeddingDim]
decompressDims = list(()) + [inputDim]
bnDecay = 0.99
l2scale = 2.5e-5 # WGAN: 2.5e-5, GAN: 0.001
pretrainEpochs = 100 #2, 100
pretrainBatchSize = 128
nEpochs = 1000 #2, 1000
batchSize = 1024
cilpc = 0.01
n_discriminator_update = 2
learning_rate = 5e-4 # GAN: 0.001
adj = 1.0
db = 0.5
bn_train = True
_VALIDATION_RATIO = 0.25
top = 1071 # 1071 for original data, other: 1071 (in paper), 512, 64
if dataType == 'binary':
aeActivation = tf.nn.tanh
else:
aeActivation = tf.nn.relu
generatorActivation = tf.nn.relu
discriminatorActivation = tf.nn.relu
zs = data.NoiseSampler()
ae_net = model.Autoencoder(inputDim, l2scale, compressDims, aeActivation, decompressDims, dataType)
g_net = model.Generator(randomDim, l2scale, generatorDims, bn_train, generatorActivation, bnDecay, dataType)
d_net = model.buildDiscriminator(inputDim, discriminatorDims, discriminatorActivation, decompressDims, aeActivation, dataType, l2scale)
wgan = MIMIC_WGAN(g_net, d_net, ae_net, zs, decompressDims, aeActivation, dataType, _VALIDATION_RATIO, top, batchSize, cilpc, n_discriminator_update, learning_rate, adj, db)
wgan.train_autoencoder(pretrainEpochs, pretrainBatchSize) # Pre-training autoencoder
x_train, x_gene = wgan.train(nEpochs, batchSize)
wgan.loss_store2(x_train, x_gene)