-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
26 lines (26 loc) · 1.03 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Package: Pomona
Title: Identification of relevant variables in omics data sets using Random
Forests
Version: 1.0.2
Authors@R:
person("Silke", "Szymczak", email = "silke.szymczak@uni-luebeck.de",
role = c("aut", "cre"))
person("Cesaire", "Fouodo", email = "cesaire.kuetefouodo@uni-luebeck.de",
role = c("cre"))
Description: This package provides different methods for identifying relevant
variables in omics data sets using Random Forests. It implements the following
approaches: empirical and parametric permutation (Altmann), Boruta, Vita,
r2VIM (recurrent relative veriable importance), RFE (recursive feature
elimination) and Hybrid, combining Vita and Boruta. All approaches use unscaled permutation variable importance and
the R package ranger to generate the forests. The
package also includes a function to simulate correlated gene expression data.
Depends:
R (>= 3.3.1)
Imports:
ranger (>= 0.5.0),
Boruta (>= 5.1.0),
methods
License: GPL-3
LazyData: true
RoxygenNote: 7.1.1
Encoding: UTF-8