-
Notifications
You must be signed in to change notification settings - Fork 10
/
RealAux.v
692 lines (575 loc) · 20.3 KB
/
RealAux.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
(** Supplement to Coq's axiomatized Reals *)
Require Export Reals.
Require Import Psatz.
Require Export Program.
Require Export Summation.
(** * Basic lemmas *)
(** Relevant lemmas from Coquelicot's Rcomplements.v **)
Open Scope R_scope.
Local Coercion INR : nat >-> R.
Lemma Rle_minus_l : forall a b c,(a - c <= b <-> a <= b + c). Proof. intros. lra. Qed.
Lemma Rlt_minus_r : forall a b c,(a < b - c <-> a + c < b). Proof. intros. lra. Qed.
Lemma Rlt_minus_l : forall a b c,(a - c < b <-> a < b + c). Proof. intros. lra. Qed.
Lemma Rle_minus_r : forall a b c,(a <= b - c <-> a + c <= b). Proof. intros. lra. Qed.
Lemma Rminus_le_0 : forall a b, a <= b <-> 0 <= b - a. Proof. intros. lra. Qed.
Lemma Rminus_lt_0 : forall a b, a < b <-> 0 < b - a. Proof. intros. lra. Qed.
(* Automation *)
Lemma Rminus_unfold : forall r1 r2, (r1 - r2 = r1 + -r2). Proof. reflexivity. Qed.
Lemma Rdiv_unfold : forall r1 r2, (r1 / r2 = r1 */ r2). Proof. reflexivity. Qed.
#[export] Hint Rewrite Rminus_unfold Rdiv_unfold Ropp_0 Ropp_involutive Rplus_0_l
Rplus_0_r Rmult_0_l Rmult_0_r Rmult_1_l Rmult_1_r : R_db.
#[export] Hint Rewrite <- Ropp_mult_distr_l Ropp_mult_distr_r : R_db.
#[export] Hint Rewrite Rinv_l Rinv_r sqrt_sqrt using lra : R_db.
Notation "√ n" := (sqrt n) (at level 20) : R_scope.
(** Other useful facts *)
Lemma Rmult_div_assoc : forall (x y z : R), x * (y / z) = x * y / z.
Proof. intros. unfold Rdiv. rewrite Rmult_assoc. reflexivity. Qed.
Lemma Rmult_div : forall r1 r2 r3 r4 : R, r2 <> 0 -> r4 <> 0 ->
r1 / r2 * (r3 / r4) = r1 * r3 / (r2 * r4).
Proof. intros. unfold Rdiv. rewrite Rinv_mult; trivial. lra. Qed.
Lemma Rdiv_cancel : forall r r1 r2 : R, r1 = r2 -> r / r1 = r / r2.
Proof. intros. rewrite H. reflexivity. Qed.
Lemma Rsum_nonzero : forall r1 r2 : R, r1 <> 0 \/ r2 <> 0 -> r1 * r1 + r2 * r2 <> 0.
Proof.
intros.
replace (r1 * r1)%R with (r1 ^ 2)%R by lra.
replace (r2 * r2)%R with (r2 ^ 2)%R by lra.
specialize (pow2_ge_0 (r1)). intros GZ1.
specialize (pow2_ge_0 (r2)). intros GZ2.
destruct H.
- specialize (pow_nonzero r1 2 H). intros NZ. lra.
- specialize (pow_nonzero r2 2 H). intros NZ. lra.
Qed.
Lemma Rpow_le1: forall (x : R) (n : nat), 0 <= x <= 1 -> x ^ n <= 1.
Proof.
intros; induction n.
- simpl; lra.
- simpl.
rewrite <- Rmult_1_r.
apply Rmult_le_compat; try lra.
apply pow_le; lra.
Qed.
(* The other side of Rle_pow, needed below *)
Lemma Rle_pow_le1: forall (x : R) (m n : nat),
0 <= x <= 1 -> (m <= n)%nat -> x ^ n <= x ^ m.
Proof.
intros x m n [G0 L1] L.
remember (n - m)%nat as p.
replace n with (m+p)%nat in * by lia.
clear -G0 L1.
rewrite pow_add.
rewrite <- Rmult_1_r.
apply Rmult_le_compat; try lra.
apply pow_le; trivial.
apply pow_le; trivial.
apply Rpow_le1; lra.
Qed.
(** * Square roots *)
Lemma pow2_sqrt : forall x:R, 0 <= x -> (√ x) ^ 2 = x.
Proof. intros; simpl; rewrite Rmult_1_r, sqrt_def; auto. Qed.
Lemma sqrt_pow : forall (r : R) (n : nat), (0 <= r)%R -> (√ (r ^ n) = √ r ^ n)%R.
Proof.
intros r n Hr.
induction n.
simpl. apply sqrt_1.
rewrite <- 2 tech_pow_Rmult.
rewrite sqrt_mult_alt by assumption.
rewrite IHn. reflexivity.
Qed.
Lemma pow2_sqrt2 : (√ 2) ^ 2 = 2.
Proof. apply pow2_sqrt; lra. Qed.
Lemma pown_sqrt : forall (x : R) (n : nat),
0 <= x -> √ x ^ (S (S n)) = x * √ x ^ n.
Proof.
intros. simpl. rewrite <- Rmult_assoc. rewrite sqrt_sqrt; auto.
Qed.
Lemma sqrt_neq_0_compat : forall r : R, 0 < r -> √ r <> 0.
Proof. intros. specialize (sqrt_lt_R0 r). lra. Qed.
Lemma sqrt_inv : forall (r : R), 0 < r -> √ (/ r) = (/ √ r)%R.
Proof.
intros.
replace (/r)%R with (1/r)%R by lra.
rewrite sqrt_div_alt, sqrt_1 by lra.
lra.
Qed.
Lemma sqrt2_div2 : (√ 2 / 2)%R = (1 / √ 2)%R.
Proof.
field_simplify_eq; try (apply sqrt_neq_0_compat; lra).
rewrite pow2_sqrt2; easy.
Qed.
Lemma sqrt2_inv : √ (/ 2) = (/ √ 2)%R.
Proof. apply sqrt_inv; lra. Qed.
Lemma sqrt_sqrt_inv : forall (r : R), 0 < r -> (√ r * √ / r)%R = 1.
Proof.
intros.
rewrite sqrt_inv; trivial.
rewrite Rinv_r; trivial.
apply sqrt_neq_0_compat; easy.
Qed.
Lemma sqrt2_sqrt2_inv : (√ 2 * √ / 2)%R = 1.
Proof. apply sqrt_sqrt_inv. lra. Qed.
Lemma sqrt2_inv_sqrt2 : ((√ / 2) * √ 2)%R = 1.
Proof. rewrite Rmult_comm. apply sqrt2_sqrt2_inv. Qed.
Lemma sqrt2_inv_sqrt2_inv : ((√ / 2) * (√ / 2) = /2)%R.
Proof.
rewrite sqrt2_inv. field_simplify.
rewrite pow2_sqrt2. easy.
apply sqrt_neq_0_compat; lra.
Qed.
Lemma sqrt_1_unique : forall x, 1 = √ x -> x = 1.
Proof. intros. assert (H' := H). unfold sqrt in H. destruct (Rcase_abs x).
- apply R1_neq_R0 in H; easy.
- rewrite <- (sqrt_def x); try rewrite <- H'; lra.
Qed.
Lemma lt_ep_helper : forall (ϵ : R),
ϵ > 0 <-> ϵ / √ 2 > 0.
Proof. intros; split; intros.
- unfold Rdiv.
apply Rmult_gt_0_compat; auto;
apply Rinv_0_lt_compat; apply Rlt_sqrt2_0.
- rewrite <- (Rmult_1_r ϵ).
rewrite <- (Rinv_l (√ 2)), <- Rmult_assoc.
apply Rmult_gt_0_compat; auto.
apply Rlt_sqrt2_0.
apply sqrt2_neq_0.
Qed.
(** Defining 2-adic valuation of an integer and properties *)
Open Scope Z_scope.
(* could return nat, but int seem better *)
Fixpoint two_val_pos (p : positive) : Z :=
match p with
| xO p' => 1 + (two_val_pos p')
| _ => 0
end.
Fixpoint odd_part_pos (p : positive) : positive :=
match p with
| xO p' => odd_part_pos p'
| _ => p
end.
Lemma two_val_pos_mult : forall (p1 p2 : positive),
two_val_pos (p1 * p2) = two_val_pos p1 + two_val_pos p2.
Proof. induction p1; try easy; intros.
- replace (two_val_pos p1~1) with 0 by easy.
induction p2; try easy.
replace ((xI p1) * (xO p2))%positive with (xO ((xI p1) * p2))%positive by lia.
replace (two_val_pos (xO ((xI p1) * p2))%positive) with
(1 + (two_val_pos ((xI p1) * p2)%positive)) by easy.
rewrite IHp2; easy.
- replace (two_val_pos (xO p1)) with (1 + two_val_pos p1) by easy.
rewrite <- Z.add_assoc, <- IHp1.
replace ((xO p1) * p2)%positive with (xO (p1 * p2))%positive by lia.
easy.
Qed.
(* TODO: prove at some point, don't actually need this now though. *)
(*
Lemma two_val_pos_plus : forall (p1 p2 : positive),
two_val_pos (p1 + p2) >= Z.min (two_val_pos p1) (two_val_pos p2).
Proof. induction p1; try easy; intros.
- replace (two_val_pos p1~1) with 0 by easy.
induction p2; try easy.
replace ((xI p1) * (xO p2))%positive with (xO ((xI p1) * p2))%positive by lia.
replace (two_val_pos (xO ((xI p1) * p2))%positive) with
(1 + (two_val_pos ((xI p1) * p2)%positive)) by easy.
rewrite IHp2; easy.
- replace (two_val_pos (xO p1)) with (1 + two_val_pos p1) by easy.
rewrite <- Z.add_assoc, <- IHp1.
replace ((xO p1) * p2)%positive with (xO (p1 * p2))%positive by lia.
easy.
Qed. *)
(* CHECK: maybe only need these for positives since we split on 0, pos, neg, anyways *)
Definition two_val (z : Z) : Z :=
match z with
| Z0 => 0 (* poorly defined on 0 *)
| Zpos p => two_val_pos p
| Zneg p => two_val_pos p
end.
Definition odd_part (z : Z) : Z :=
match z with
| Z0 => 0 (* poorly defined on 0 *)
| Zpos p => Zpos (odd_part_pos p)
| Zneg p => Zneg (odd_part_pos p)
end.
(* useful for below since its easier to induct on nats rather than ints *)
Coercion Z.of_nat : nat >-> Z.
(* helper for the next section to go from nats to ints *)
Lemma Z_plusminus_nat : forall z : Z,
(exists n : nat, z = n \/ z = - n)%Z.
Proof. intros.
destruct z.
- exists O; left; easy.
- exists (Pos.to_nat p); left; lia.
- exists (Pos.to_nat p); right; lia.
Qed.
Lemma two_val_mult : forall (z1 z2 : Z),
z1 <> 0 -> z2 <> 0 ->
two_val (z1 * z2) = two_val z1 + two_val z2.
Proof. intros.
destruct z1; destruct z2; simpl; try easy.
all : rewrite two_val_pos_mult; easy.
Qed.
(* TODO: should prove this, but don't actually need it.
Lemma two_val_plus : forall (z1 z2 : Z),
z1 <> 0 -> z2 <> 0 ->
z1 + z2 <> 0 ->
two_val (z1 + z2) >= Z.min (two_val z1) (two_val z2).
Proof. intros.
destruct z1; destruct z2; try easy.
*)
Lemma two_val_odd_part : forall (z : Z),
two_val (2 * z + 1) = 0.
Proof. intros.
destruct z; auto.
destruct p; auto.
Qed.
Lemma two_val_even_part : forall (a : Z),
a >= 0 -> two_val (2 ^ a) = a.
Proof. intros.
destruct (Z_plusminus_nat a) as [x [H0 | H0]]; subst.
induction x; auto.
replace (S x) with (1 + x)%nat by lia.
rewrite Nat2Z.inj_add, Z.pow_add_r, two_val_mult; try lia.
rewrite IHx; auto; try lia.
try (apply (Z.pow_nonzero 2 x); lia).
induction x; auto.
replace (S x) with (1 + x)%nat by lia.
rewrite Nat2Z.inj_add, Z.opp_add_distr, Z.pow_add_r, two_val_mult; try lia.
Qed.
Lemma twoadic_nonzero : forall (a b : Z),
a >= 0 -> 2^a * (2 * b + 1) <> 0.
Proof. intros.
apply Z.neq_mul_0; split; try lia;
try (apply Z.pow_nonzero; lia).
Qed.
Lemma get_two_val : forall (a b : Z),
a >= 0 ->
two_val (2^a * (2 * b + 1)) = a.
Proof. intros.
rewrite two_val_mult; auto.
rewrite two_val_odd_part, two_val_even_part; try lia.
apply Z.pow_nonzero; try lia.
lia.
Qed.
Lemma odd_part_reduce : forall (a : Z),
odd_part (2 * a) = odd_part a.
Proof. intros.
induction a; try easy.
Qed.
Lemma get_odd_part : forall (a b : Z),
a >= 0 ->
odd_part (2^a * (2 * b + 1)) = 2 * b + 1.
Proof. intros.
destruct (Z_plusminus_nat a) as [x [H0 | H0]]; subst.
induction x; try easy.
- replace (2 ^ 0%nat * (2 * b + 1)) with (2 * b + 1) by lia.
destruct b; simpl; auto.
induction p; simpl; easy.
- replace (2 ^ S x * (2 * b + 1)) with (2 * (2 ^ x * (2 * b + 1))).
rewrite odd_part_reduce, IHx; try lia.
replace (S x) with (1 + x)%nat by lia.
rewrite Nat2Z.inj_add, Z.pow_add_r; try lia.
- destruct x; try easy.
replace (2 ^ (- 0%nat) * (2 * b + 1)) with (2 * b + 1) by lia.
destruct b; simpl; auto.
induction p; simpl; easy.
Qed.
Lemma break_into_parts : forall (z : Z),
z <> 0 -> exists a b, a >= 0 /\ z = (2^a * (2 * b + 1)).
Proof. intros.
destruct z; try easy.
- induction p.
+ exists 0, (Z.pos p); try easy.
+ destruct IHp as [a [b [H0 H1]]]; try easy.
exists (1 + a), b.
replace (Z.pos (xO p)) with (2 * Z.pos p) by easy.
split; try lia.
rewrite H1, Z.pow_add_r; try lia.
+ exists 0, 0; split; try lia.
- induction p.
+ exists 0, (Z.neg p - 1); try easy; try lia.
+ destruct IHp as [a [b [H0 H1]]]; try easy.
exists (1 + a), b.
replace (Z.neg (xO p)) with (2 * Z.neg p) by easy.
split; try lia.
rewrite H1, Z.pow_add_r; try lia.
+ exists 0, (-1); split; try lia.
Qed.
Lemma twoadic_breakdown : forall (z : Z),
z <> 0 -> z = (2^(two_val z)) * (odd_part z).
Proof. intros.
destruct (break_into_parts z) as [a [b [H0 H1]]]; auto.
rewrite H1, get_two_val, get_odd_part; easy.
Qed.
Lemma odd_part_pos_odd : forall (p : positive),
(exists p', odd_part_pos p = xI p') \/ (odd_part_pos p = xH).
Proof. intros.
induction p.
- left; exists p; easy.
- destruct IHp.
+ left.
destruct H.
exists x; simpl; easy.
+ right; simpl; easy.
- right; easy.
Qed.
Lemma odd_part_0 : forall (z : Z),
odd_part z = 0 -> z = 0.
Proof. intros.
destruct z; simpl in *; easy.
Qed.
Lemma odd_part_odd : forall (z : Z),
z <> 0 ->
2 * ((odd_part z - 1) / 2) + 1 = odd_part z.
Proof. intros.
rewrite <- (Zdiv.Z_div_exact_full_2 _ 2); try lia.
destruct z; try easy; simpl;
destruct (odd_part_pos_odd p).
- destruct H0; rewrite H0; simpl.
rewrite Pos2Z.pos_xO, Zmult_comm, Zdiv.Z_mod_mult.
easy.
- rewrite H0; easy.
- destruct H0; rewrite H0; simpl.
rewrite (Pos2Z.neg_xO (Pos.succ x)), Zmult_comm, Zdiv.Z_mod_mult.
easy.
- rewrite H0; easy.
Qed.
Lemma two_val_ge_0 : forall (z : Z),
two_val z >= 0.
Proof. intros.
destruct z; simpl; try lia.
- induction p; try (simpl; lia).
replace (two_val_pos p~0) with (1 + two_val_pos p) by easy.
lia.
- induction p; try (simpl; lia).
replace (two_val_pos p~0) with (1 + two_val_pos p) by easy.
lia.
Qed.
(*
*
*
*)
Close Scope Z_scope.
(** proving that sqrt2 is irrational! *)
(* note that the machinery developed in the previous section makes this super easy,
although does not generalize for other primes *)
Lemma two_not_square : forall (a b : Z),
(b <> 0)%Z ->
~ (a*a = b*b*2)%Z.
Proof. intros.
unfold not; intros.
destruct (Z.eq_dec a 0); try lia.
apply (f_equal_gen two_val two_val) in H0; auto.
do 3 (rewrite two_val_mult in H0; auto); try lia.
replace (two_val 2) with 1%Z in H0 by easy.
lia.
Qed.
Theorem sqrt2_irrational : forall (a b : Z),
(b <> 0)%Z -> ~ (IZR a = (IZR b) * √ 2).
Proof. intros.
apply (two_not_square a b) in H.
unfold not; intros; apply H.
apply (f_equal_gen (fun x => x * x) (fun x => x * x)) in H0; auto.
rewrite Rmult_assoc, (Rmult_comm (√ 2)), Rmult_assoc,
sqrt_def, <- Rmult_assoc in H0; try lra.
repeat rewrite <- mult_IZR in H0.
apply eq_IZR in H0.
easy.
Qed.
Corollary one_sqrt2_Rbasis : forall (a b : Z),
(IZR a) + (IZR b) * √2 = 0 ->
(a = 0 /\ b = 0)%Z.
Proof. intros.
destruct (Req_dec (IZR b) 0); subst.
split.
rewrite H0, Rmult_0_l, Rplus_0_r in H.
all : try apply eq_IZR; auto.
apply Rplus_opp_r_uniq in H; symmetry in H.
assert (H' : b <> 0%Z).
unfold not; intros; apply H0.
rewrite H1; auto.
apply (sqrt2_irrational (-a) b) in H'.
rewrite Ropp_Ropp_IZR in H'.
easy.
Qed.
(* Automation *)
Ltac R_field_simplify := repeat field_simplify_eq [pow2_sqrt2 sqrt2_inv].
Ltac R_field := R_field_simplify; easy.
(** * Trigonometry *)
Lemma sin_upper_bound_aux : forall x : R, 0 < x < 1 -> sin x <= x.
Proof.
intros x H.
specialize (SIN_bound x) as B.
destruct (SIN x) as [_ B2]; try lra.
specialize PI2_1 as PI1. lra.
unfold sin_ub, sin_approx in *.
simpl in B2.
unfold sin_term at 1 in B2.
simpl in B2.
unfold Rdiv in B2.
rewrite Rinv_1, Rmult_1_l, !Rmult_1_r in B2.
(* Now just need to show that the other terms are negative... *)
assert (sin_term x 1 + sin_term x 2 + sin_term x 3 + sin_term x 4 <= 0); try lra.
unfold sin_term.
remember (INR (fact (2 * 1 + 1))) as d1.
remember (INR (fact (2 * 2 + 1))) as d2.
remember (INR (fact (2 * 3 + 1))) as d3.
remember (INR (fact (2 * 4 + 1))) as d4.
assert (0 < d1) as L0.
{ subst. apply lt_0_INR. apply lt_O_fact. }
assert (d1 <= d2) as L1.
{ subst. apply le_INR. apply fact_le. simpl; lia. }
assert (d2 <= d3) as L2.
{ subst. apply le_INR. apply fact_le. simpl; lia. }
assert (d3 <= d4) as L3.
{ subst. apply le_INR. apply fact_le. simpl; lia. }
simpl.
ring_simplify.
assert ( - (x * (x * (x * 1)) / d1) + x * (x * (x * (x * (x * 1)))) / d2 <= 0).
rewrite Rplus_comm.
apply Rle_minus.
field_simplify; try lra.
assert (x ^ 5 <= x ^ 3).
{ apply Rle_pow_le1; try lra; try lia. }
apply Rmult_le_compat; try lra.
apply pow_le; lra.
left. apply Rinv_0_lt_compat. lra.
apply Rinv_le_contravar; lra.
unfold Rminus.
assert (- (x * (x * (x * (x * (x * (x * (x * 1)))))) / d3) +
x * (x * (x * (x * (x * (x * (x * (x * (x * 1)))))))) / d4 <= 0).
rewrite Rplus_comm.
apply Rle_minus.
field_simplify; try lra.
assert (x ^ 9 <= x ^ 7).
{ apply Rle_pow_le1; try lra; try lia. }
apply Rmult_le_compat; try lra.
apply pow_le; lra.
left. apply Rinv_0_lt_compat. lra.
apply Rinv_le_contravar; lra.
lra.
Qed.
Lemma sin_upper_bound : forall x : R, Rabs (sin x) <= Rabs x.
Proof.
intros x.
specialize (SIN_bound x) as B.
destruct (Rlt_or_le (Rabs x) 1).
(* abs(x) > 1 *)
2:{ apply Rabs_le in B. lra. }
destruct (Rtotal_order x 0) as [G | [E| L]].
- (* x < 0 *)
rewrite (Rabs_left x) in * by lra.
rewrite (Rabs_left (sin x)).
2:{ apply sin_lt_0_var; try lra.
specialize PI2_1 as PI1.
lra. }
rewrite <- sin_neg.
apply sin_upper_bound_aux.
lra.
- (* x = 0 *)
subst. rewrite sin_0. lra.
- rewrite (Rabs_right x) in * by lra.
rewrite (Rabs_right (sin x)).
2:{ apply Rle_ge.
apply sin_ge_0; try lra.
specialize PI2_1 as PI1. lra. }
apply sin_upper_bound_aux; lra.
Qed.
#[export] Hint Rewrite sin_0 sin_PI4 sin_PI2 sin_PI cos_0 cos_PI4 cos_PI2
cos_PI sin_neg cos_neg : trig_db.
(** * glb support *)
Definition is_lower_bound (E:R -> Prop) (m:R) := forall x:R, E x -> m <= x.
Definition bounded_below (E:R -> Prop) := exists m : R, is_lower_bound E m.
Definition is_glb (E:R -> Prop) (m:R) :=
is_lower_bound E m /\ (forall b:R, is_lower_bound E b -> b <= m).
Definition neg_Rset (E : R -> Prop) :=
fun r => E (-r).
Lemma lb_negset_ub : forall (E : R -> Prop) (b : R),
is_lower_bound E b <-> is_upper_bound (neg_Rset E) (-b).
Proof. unfold is_lower_bound, is_upper_bound, neg_Rset; split; intros.
- apply H in H0; lra.
- rewrite <- Ropp_involutive in H0.
apply H in H0; lra.
Qed.
Lemma ub_negset_lb : forall (E : R -> Prop) (b : R),
is_upper_bound E b <-> is_lower_bound (neg_Rset E) (-b).
Proof. unfold is_lower_bound, is_upper_bound, neg_Rset; split; intros.
- apply H in H0; lra.
- rewrite <- Ropp_involutive in H0.
apply H in H0; lra.
Qed.
Lemma negset_bounded_above : forall (E : R -> Prop),
bounded_below E -> (bound (neg_Rset E)).
Proof. intros.
destruct H.
exists (-x).
apply lb_negset_ub; easy.
Qed.
Lemma negset_glb : forall (E : R -> Prop) (m : R),
is_lub (neg_Rset E) m -> is_glb E (-m).
Proof. intros.
destruct H; split.
- apply lb_negset_ub.
rewrite Ropp_involutive; easy.
- intros.
apply lb_negset_ub in H1.
apply H0 in H1; lra.
Qed.
Lemma glb_completeness :
forall E:R -> Prop,
bounded_below E -> (exists x : R, E x) -> { m:R | is_glb E m }.
Proof. intros.
apply negset_bounded_above in H.
assert (H' : exists x : R, (neg_Rset E) x).
{ destruct H0; exists (-x).
unfold neg_Rset; rewrite Ropp_involutive; easy. }
apply completeness in H'; auto.
destruct H' as [m [H1 H2] ].
exists (-m).
apply negset_glb; easy.
Qed.
(** * Showing that R is a field, and a vector space over itself *)
Global Program Instance R_is_monoid : Monoid R :=
{ Gzero := 0
; Gplus := Rplus
}.
Solve All Obligations with program_simpl; try lra.
Global Program Instance R_is_group : Group R :=
{ Gopp := Ropp }.
Solve All Obligations with program_simpl; try lra.
Global Program Instance R_is_comm_group : Comm_Group R.
Solve All Obligations with program_simpl; lra.
Global Program Instance R_is_ring : Ring R :=
{ Gone := 1
; Gmult := Rmult
}.
Solve All Obligations with program_simpl; try lra.
Next Obligation. try apply Req_EM_T. Qed.
Global Program Instance R_is_comm_ring : Comm_Ring R.
Solve All Obligations with program_simpl; lra.
Global Program Instance R_is_field : Field R :=
{ Ginv := Rinv }.
Next Obligation.
rewrite Rinv_r; easy.
Qed.
Global Program Instance R_is_module_space : Module_Space R R :=
{ Vscale := Rmult }.
Solve All Obligations with program_simpl; lra.
Global Program Instance R_is_vector_space : Vector_Space R R.
(** * some big_sum lemmas specific to R *)
Lemma Rsum_le : forall (f g : nat -> R) (n : nat),
(forall i, (i < n)%nat -> f i <= g i) ->
(big_sum f n) <= (big_sum g n).
Proof. induction n as [| n']; simpl; try lra.
intros.
apply Rplus_le_compat.
apply IHn'; intros.
all : apply H; try lia.
Qed.
Lemma Rsum_ge_0 : forall (f : nat -> R) (n : nat),
(forall i, (i < n)%nat -> 0 <= f i) ->
0 <= big_sum f n.
Proof. induction n as [| n'].
- intros; simpl; lra.
- intros. simpl; apply Rplus_le_le_0_compat.
apply IHn'; intros; apply H; lia.
apply H; lia.
Qed.