-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate.py
138 lines (116 loc) · 4.59 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample
# from model import FastSpeech2Loss
# from dataset import Dataset
from datasets.datasets import OneshotVcDataset, MultiSpkVcCollate
from model.loss import DisentangleLoss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluate(model, step, configs, logger=None, vocoder=None):
preprocess_config, model_config, train_config = configs
# Get dataset
# evalset = Dataset(
# "val.txt", preprocess_config, train_config, sort=False, drop_last=False
# )
# batch_size = train_config["optimizer"]["batch_size"]
# loader = DataLoader(
# dataset,
# batch_size=batch_size,
# shuffle=False,
# collate_fn=dataset.collate_fn,
# )
validate_set = OneshotVcDataset(
meta_file= preprocess_config["data"]["validate_fid_list"],
vctk_wav_dir= preprocess_config["data"]["vctk_wav_dir"],
vctk_spk_dvec_dir= preprocess_config["data"]["vctk_spk_dvec_dir"],
min_max_norm_mel = preprocess_config["data"]["min_max_norm_mel"],
mel_min = None,
mel_max = None,
wav_file_ext = "wav",
)
validate_loader = DataLoader(validate_set, batch_size=train_config["optimizer"]["batch_size"],
shuffle=False, num_workers=train_config["ddp"]["num_workers"],
collate_fn=MultiSpkVcCollate(n_frames_per_step=1,
f02ppg_length_ratio=1,
use_spk_dvec=True))
# Get loss function
# Loss = FastSpeech2Loss(preprocess_config, model_config).to(device)
Loss = DisentangleLoss(preprocess_config, model_config).to(device)
# Evaluation
loss_sums = [0 for _ in range(6)]
for batchs in validate_loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(*(batch[2:]))
# Cal Loss
losses = Loss(batch, output)
for i in range(len(losses)):
loss_sums[i] += losses[i].item() * len(batch[0])
loss_means = [loss_sum / len(validate_set) for loss_sum in loss_sums]
message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}".format(
*([step] + [l for l in loss_means])
)
if logger is not None:
fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output,
vocoder,
model_config,
preprocess_config,
step
)
log(logger, step, losses=loss_means)
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
return message
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=30000)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
# Get model
model = get_model(args, configs, device, train=False).to(device)
message = evaluate(model, args.restore_step, configs)
print(message)