Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

-[TKApplication tkProcessEvent:]: unrecognized selector sent to instance 0x140e53fd #613

Open
mq1 opened this issue Jul 25, 2022 · 6 comments
Labels
python-build-standalone Bugs and feature requests for python-build-standalone

Comments

@mq1
Copy link

mq1 commented Jul 25, 2022

I don't seem to be able to run my application

The project does build, but fails to run:
2022-07-25 12:08:41.161 ice-launcher[27960:535880] -[TKApplication tkProcessEvent:]: unrecognized selector sent to instance 0x140e53fd0

My pyoxidizer.bzl

# This file defines how PyOxidizer application building and packaging is
# performed. See PyOxidizer's documentation at
# https://pyoxidizer.readthedocs.io/en/stable/ for details of this
# configuration file format.

# Configuration files consist of functions which define build "targets."
# This function creates a Python executable and installs it in a destination
# directory.
def make_exe():
    # Obtain the default PythonDistribution for our build target. We link
    # this distribution into our produced executable and extract the Python
    # standard library from it.
    dist = default_python_distribution()

    # This function creates a `PythonPackagingPolicy` instance, which
    # influences how executables are built and how resources are added to
    # the executable. You can customize the default behavior by assigning
    # to attributes and calling functions.
    policy = dist.make_python_packaging_policy()

    # Enable support for non-classified "file" resources to be added to
    # resource collections.
    # policy.allow_files = True

    # Control support for loading Python extensions and other shared libraries
    # from memory. This is only supported on Windows and is ignored on other
    # platforms.
    # policy.allow_in_memory_shared_library_loading = True

    # Control whether to generate Python bytecode at various optimization
    # levels. The default optimization level used by Python is 0.
    # policy.bytecode_optimize_level_zero = True
    # policy.bytecode_optimize_level_one = True
    # policy.bytecode_optimize_level_two = True

    # Package all available Python extensions in the distribution.
    # policy.extension_module_filter = "all"

    # Package the minimum set of Python extensions in the distribution needed
    # to run a Python interpreter. Various functionality from the Python
    # standard library won't work with this setting! But it can be used to
    # reduce the size of generated executables by omitting unused extensions.
    # policy.extension_module_filter = "minimal"

    # Package Python extensions in the distribution not having additional
    # library dependencies. This will exclude working support for SSL,
    # compression formats, and other functionality.
    # policy.extension_module_filter = "no-libraries"

    # Package Python extensions in the distribution not having a dependency on
    # copyleft licensed software like GPL.
    # policy.extension_module_filter = "no-copyleft"

    # Controls whether the file scanner attempts to classify files and emit
    # resource-specific values.
    # policy.file_scanner_classify_files = True

    # Controls whether `File` instances are emitted by the file scanner.
    # policy.file_scanner_emit_files = False

    # Controls the `add_include` attribute of "classified" resources
    # (`PythonModuleSource`, `PythonPackageResource`, etc).
    # policy.include_classified_resources = True

    # Toggle whether Python module source code for modules in the Python
    # distribution's standard library are included.
    # policy.include_distribution_sources = False

    # Toggle whether Python package resource files for the Python standard
    # library are included.
    # policy.include_distribution_resources = False

    # Controls the `add_include` attribute of `File` resources.
    # policy.include_file_resources = True

    # Controls the `add_include` attribute of `PythonModuleSource` not in
    # the standard library.
    # policy.include_non_distribution_sources = True

    # Toggle whether files associated with tests are included.
    # policy.include_test = False

    # Resources are loaded from "in-memory" or "filesystem-relative" paths.
    # The locations to attempt to add resources to are defined by the
    # `resources_location` and `resources_location_fallback` attributes.
    # The former is the first/primary location to try and the latter is
    # an optional fallback.

    # Use in-memory location for adding resources by default.
    policy.resources_location = "filesystem-relative:lib"

    # Use filesystem-relative location for adding resources by default.
    # policy.resources_location = "filesystem-relative:prefix"

    # Attempt to add resources relative to the built binary when
    # `resources_location` fails.
    # policy.resources_location_fallback = "filesystem-relative:prefix"

    # Clear out a fallback resource location.
    # policy.resources_location_fallback = None

    # Define a preferred Python extension module variant in the Python distribution
    # to use.
    # policy.set_preferred_extension_module_variant("foo", "bar")

    # Configure policy values to classify files as typed resources.
    # (This is the default.)
    # policy.set_resource_handling_mode("classify")

    # Configure policy values to handle files as files and not attempt
    # to classify files as specific types.
    # policy.set_resource_handling_mode("files")

    # This variable defines the configuration of the embedded Python
    # interpreter. By default, the interpreter will run a Python REPL
    # using settings that are appropriate for an "isolated" run-time
    # environment.
    #
    # The configuration of the embedded Python interpreter can be modified
    # by setting attributes on the instance. Some of these are
    # documented below.
    python_config = dist.make_python_interpreter_config()

    # Make the embedded interpreter behave like a `python` process.
    # python_config.config_profile = "python"

    # Set initial value for `sys.path`. If the string `$ORIGIN` exists in
    # a value, it will be expanded to the directory of the built executable.
    # python_config.module_search_paths = ["$ORIGIN/lib"]

    # Use jemalloc as Python's memory allocator.
    # python_config.allocator_backend = "jemalloc"

    # Use mimalloc as Python's memory allocator.
    # python_config.allocator_backend = "mimalloc"

    # Use snmalloc as Python's memory allocator.
    # python_config.allocator_backend = "snmalloc"

    # Let Python choose which memory allocator to use. (This will likely
    # use the malloc()/free() linked into the program.
    # python_config.allocator_backend = "default"

    # Enable the use of a custom allocator backend with the "raw" memory domain.
    # python_config.allocator_raw = True

    # Enable the use of a custom allocator backend with the "mem" memory domain.
    # python_config.allocator_mem = True

    # Enable the use of a custom allocator backend with the "obj" memory domain.
    # python_config.allocator_obj = True

    # Enable the use of a custom allocator backend with pymalloc's arena
    # allocator.
    # python_config.allocator_pymalloc_arena = True

    # Enable Python memory allocator debug hooks.
    # python_config.allocator_debug = True

    # Automatically calls `multiprocessing.set_start_method()` with an
    # appropriate value when OxidizedFinder imports the `multiprocessing`
    # module.
    # python_config.multiprocessing_start_method = 'auto'

    # Do not call `multiprocessing.set_start_method()` automatically. (This
    # is the default behavior of Python applications.)
    # python_config.multiprocessing_start_method = 'none'

    # Call `multiprocessing.set_start_method()` with explicit values.
    # python_config.multiprocessing_start_method = 'fork'
    # python_config.multiprocessing_start_method = 'forkserver'
    # python_config.multiprocessing_start_method = 'spawn'

    # Control whether `oxidized_importer` is the first importer on
    # `sys.meta_path`.
    # python_config.oxidized_importer = False

    # Enable the standard path-based importer which attempts to load
    # modules from the filesystem.
    # python_config.filesystem_importer = True

    # Set `sys.frozen = False`
    # python_config.sys_frozen = False

    # Set `sys.meipass`
    # python_config.sys_meipass = True

    # Write files containing loaded modules to the directory specified
    # by the given environment variable.
    # python_config.write_modules_directory_env = "/tmp/oxidized/loaded_modules"

    # Evaluate a string as Python code when the interpreter starts.
    # python_config.run_command = "<code>"

    # Run a Python module as __main__ when the interpreter starts.
    python_config.run_module = "ice_launcher"

    # Run a Python file when the interpreter starts.
    # python_config.run_filename = "/path/to/file"

    # Produce a PythonExecutable from a Python distribution, embedded
    # resources, and other options. The returned object represents the
    # standalone executable that will be built.
    exe = dist.to_python_executable(
        name="ice-launcher",

        # If no argument passed, the default `PythonPackagingPolicy` for the
        # distribution is used.
        packaging_policy=policy,

        # If no argument passed, the default `PythonInterpreterConfig` is used.
        config=python_config,
    )

    # Install tcl/tk support files to a specified directory so the `tkinter` Python
    # module works.
    exe.tcl_files_path = "lib"

    # Never attempt to copy Windows runtime DLLs next to the built executable.
    # exe.windows_runtime_dlls_mode = "never"

    # Copy Windows runtime DLLs next to the built executable when they can be
    # located.
    # exe.windows_runtime_dlls_mode = "when-present"

    # Copy Windows runtime DLLs next to the build executable and error if this
    # cannot be done.
    # exe.windows_runtime_dlls_mode = "always"

    # Make the executable a console application on Windows.
    # exe.windows_subsystem = "console"

    # Make the executable a non-console application on Windows.
    exe.windows_subsystem = "windows"

    # Invoke `pip download` to install a single package using wheel archives
    # obtained via `pip download`. `pip_download()` returns objects representing
    # collected files inside Python wheels. `add_python_resources()` adds these
    # objects to the binary, with a load location as defined by the packaging
    # policy's resource location attributes.
    #exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))

    # Invoke `pip install` with our Python distribution to install a single package.
    # `pip_install()` returns objects representing installed files.
    # `add_python_resources()` adds these objects to the binary, with a load
    # location as defined by the packaging policy's resource location
    # attributes.
    #exe.add_python_resources(exe.pip_install(["appdirs"]))

    # Invoke `pip install` using a requirements file and add the collected resources
    # to our binary.
    exe.add_python_resources(exe.pip_install(["-r", "requirements.txt"]))


    # Read Python files from a local directory and add them to our embedded
    # context, taking just the resources belonging to the `foo` and `bar`
    # Python packages.
    exe.add_python_resources(exe.read_package_root(
        path=".",
        packages=["ice_launcher"],
    ))

    # Discover Python files from a virtualenv and add them to our embedded
    # context.
    #exe.add_python_resources(exe.read_virtualenv(path="/path/to/venv"))

    # Filter all resources collected so far through a filter of names
    # in a file.
    #exe.filter_resources_from_files(files=["/path/to/filter-file"])

    # Return our `PythonExecutable` instance so it can be built and
    # referenced by other consumers of this target.
    return exe

def make_embedded_resources(exe):
    return exe.to_embedded_resources()

def make_install(exe):
    # Create an object that represents our installed application file layout.
    files = FileManifest()

    # Add the generated executable to our install layout in the root directory.
    files.add_python_resource(".", exe)

    return files

def make_msi(exe):
    # See the full docs for more. But this will convert your Python executable
    # into a `WiXMSIBuilder` Starlark type, which will be converted to a Windows
    # .msi installer when it is built.
    return exe.to_wix_msi_builder(
        # Simple identifier of your app.
        "myapp",
        # The name of your application.
        "My Application",
        # The version of your application.
        "1.0",
        # The author/manufacturer of your application.
        "Alice Jones"
    )


# Dynamically enable automatic code signing.
def register_code_signers():
    # You will need to run with `pyoxidizer build --var ENABLE_CODE_SIGNING 1` for
    # this if block to be evaluated.
    if not VARS.get("ENABLE_CODE_SIGNING"):
        return

    # Use a code signing certificate in a .pfx/.p12 file, prompting the
    # user for its path and password to open.
    # pfx_path = prompt_input("path to code signing certificate file")
    # pfx_password = prompt_password(
    #     "password for code signing certificate file",
    #     confirm = True
    # )
    # signer = code_signer_from_pfx_file(pfx_path, pfx_password)

    # Use a code signing certificate in the Windows certificate store, specified
    # by its SHA-1 thumbprint. (This allows you to use YubiKeys and other
    # hardware tokens if they speak to the Windows certificate APIs.)
    # sha1_thumbprint = prompt_input(
    #     "SHA-1 thumbprint of code signing certificate in Windows store"
    # )
    # signer = code_signer_from_windows_store_sha1_thumbprint(sha1_thumbprint)

    # Choose a code signing certificate automatically from the Windows
    # certificate store.
    # signer = code_signer_from_windows_store_auto()

    # Activate your signer so it gets called automatically.
    # signer.activate()


# Call our function to set up automatic code signers.
register_code_signers()

# Tell PyOxidizer about the build targets defined above.
register_target("exe", make_exe)
register_target("resources", make_embedded_resources, depends=["exe"], default_build_script=True)
register_target("install", make_install, depends=["exe"], default=True)
register_target("msi_installer", make_msi, depends=["exe"])

# Resolve whatever targets the invoker of this configuration file is requesting
# be resolved.
resolve_targets()

@indygreg indygreg added the python-build-standalone Bugs and feature requests for python-build-standalone label Jul 31, 2022
@indygreg
Copy link
Owner

This is a duplicate of indygreg/python-build-standalone#132. This should get fixed once we pull in / release new default Python distributions.

That might happen today. But releases take a few hours due to slow GitHub Actions runners. So don't hold your breath.

@mq1
Copy link
Author

mq1 commented Aug 6, 2022

Awesome! How can I update the python distribution in my project?

@indygreg
Copy link
Owner

indygreg commented Aug 6, 2022

Awesome! How can I update the python distribution in my project?

Until a new version is published (the new default distributions are already on the main branch if you want to build from source or grab a binary from GitHub Actions), you can use the PythonDistribution type in Starlark (instead of default_python_distribution()) to define the explicit path/URL to a distribution. https://gregoryszorc.com/docs/pyoxidizer/stable/pyoxidizer_config_type_python_distribution.html

@mq1
Copy link
Author

mq1 commented Aug 7, 2022

Awesome! How can I update the python distribution in my project?

Until a new version is published (the new default distributions are already on the main branch if you want to build from source or grab a binary from GitHub Actions), you can use the PythonDistribution type in Starlark (instead of default_python_distribution()) to define the explicit path/URL to a distribution. gregoryszorc.com/docs/pyoxidizer/stable/pyoxidizer_config_type_python_distribution.html

I built pyoxidizer from the main branch, but the problem still persists.

I am using https://github.com/indygreg/python-build-standalone/releases/download/20220802/cpython-3.10.6%2B20220802-aarch64-apple-darwin-pgo-full.tar.zst

@indygreg
Copy link
Owner

We'll need to add -ObjC to the linker argument in PyOxidizer as well.

@indygreg indygreg reopened this Aug 16, 2022
@Isonami
Copy link

Isonami commented Aug 6, 2023

I'm getting same error with latest pyoxidizer version, is there any workaround to this problem?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
python-build-standalone Bugs and feature requests for python-build-standalone
Projects
None yet
Development

No branches or pull requests

3 participants