-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathsecret_connection.rs
653 lines (568 loc) · 20.2 KB
/
secret_connection.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//! `SecretConnection`: Transport layer encryption for Tendermint P2P connections.
use std::{
cmp,
convert::{TryFrom, TryInto},
io::{self, Read, Write},
marker::{Send, Sync},
slice,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use chacha20poly1305::{
aead::{generic_array::GenericArray, AeadInPlace, KeyInit},
ChaCha20Poly1305,
};
use curve25519_dalek_ng::{
constants::X25519_BASEPOINT, montgomery::MontgomeryPoint as EphemeralPublic,
scalar::Scalar as EphemeralSecret,
};
use merlin::Transcript;
use rand_core::OsRng;
use subtle::ConstantTimeEq;
use tendermint_proto::v0_38 as proto;
use tendermint_std_ext::TryClone;
pub use self::{
kdf::Kdf,
nonce::{Nonce, SIZE as NONCE_SIZE},
protocol::Version,
public_key::PublicKey,
};
use crate::error::Error;
#[cfg(feature = "amino")]
mod amino_types;
mod kdf;
mod nonce;
mod protocol;
mod public_key;
/// Size of the MAC tag
pub const TAG_SIZE: usize = 16;
/// Maximum size of a message
pub const DATA_MAX_SIZE: usize = 1024;
/// 4 + 1024 == 1028 total frame size
const DATA_LEN_SIZE: usize = 4;
const TOTAL_FRAME_SIZE: usize = DATA_MAX_SIZE + DATA_LEN_SIZE;
/// Handshake is a process of establishing the `SecretConnection` between two peers.
/// [Specification](https://github.com/tendermint/spec/blob/master/spec/p2p/peer.md#authenticated-encryption-handshake)
pub struct Handshake<S> {
protocol_version: Version,
state: S,
}
/// Handshake states
/// `AwaitingEphKey` means we're waiting for the remote ephemeral pubkey.
pub struct AwaitingEphKey {
local_privkey: ed25519_consensus::SigningKey,
local_eph_privkey: Option<EphemeralSecret>,
}
/// `AwaitingAuthSig` means we're waiting for the remote authenticated signature.
pub struct AwaitingAuthSig {
sc_mac: [u8; 32],
kdf: Kdf,
recv_cipher: ChaCha20Poly1305,
send_cipher: ChaCha20Poly1305,
local_signature: ed25519_consensus::Signature,
}
#[allow(clippy::use_self)]
impl Handshake<AwaitingEphKey> {
/// Initiate a handshake.
#[must_use]
pub fn new(
local_privkey: ed25519_consensus::SigningKey,
protocol_version: Version,
) -> (Self, EphemeralPublic) {
// Generate an ephemeral key for perfect forward secrecy.
let local_eph_privkey = EphemeralSecret::random(&mut OsRng);
let local_eph_pubkey = X25519_BASEPOINT * &local_eph_privkey;
(
Self {
protocol_version,
state: AwaitingEphKey {
local_privkey,
local_eph_privkey: Some(local_eph_privkey),
},
},
local_eph_pubkey,
)
}
/// Performs a Diffie-Hellman key agreement and creates a local signature.
/// Transitions Handshake into `AwaitingAuthSig` state.
///
/// # Errors
///
/// * if protocol order was violated, e.g. handshake missing
/// * if challenge signing fails
pub fn got_key(
&mut self,
remote_eph_pubkey: EphemeralPublic,
) -> Result<Handshake<AwaitingAuthSig>, Error> {
let Some(local_eph_privkey) = self.state.local_eph_privkey.take() else {
return Err(Error::missing_secret());
};
let local_eph_pubkey = X25519_BASEPOINT * &local_eph_privkey;
// Compute common shared secret.
let shared_secret = &local_eph_privkey * &remote_eph_pubkey;
let mut transcript = Transcript::new(b"TENDERMINT_SECRET_CONNECTION_TRANSCRIPT_HASH");
// Reject all-zero outputs from X25519 (i.e. from low-order points)
//
// See the following for information on potential attacks this check
// aids in mitigating:
//
// - https://github.com/tendermint/kms/issues/142
// - https://eprint.iacr.org/2019/526.pdf
if shared_secret.as_bytes().ct_eq(&[0x00; 32]).unwrap_u8() == 1 {
return Err(Error::low_order_key());
}
// Sort by lexical order.
let local_eph_pubkey_bytes = *local_eph_pubkey.as_bytes();
let (low_eph_pubkey_bytes, high_eph_pubkey_bytes) =
sort32(local_eph_pubkey_bytes, *remote_eph_pubkey.as_bytes());
transcript.append_message(b"EPHEMERAL_LOWER_PUBLIC_KEY", &low_eph_pubkey_bytes);
transcript.append_message(b"EPHEMERAL_UPPER_PUBLIC_KEY", &high_eph_pubkey_bytes);
transcript.append_message(b"DH_SECRET", shared_secret.as_bytes());
// Check if the local ephemeral public key was the least, lexicographically sorted.
let loc_is_least = local_eph_pubkey_bytes == low_eph_pubkey_bytes;
let kdf = Kdf::derive_secrets_and_challenge(shared_secret.as_bytes(), loc_is_least);
let mut sc_mac: [u8; 32] = [0; 32];
transcript.challenge_bytes(b"SECRET_CONNECTION_MAC", &mut sc_mac);
// Sign the challenge bytes for authentication.
let local_signature = if self.protocol_version.has_transcript() {
self.state.local_privkey.sign(&sc_mac)
} else {
self.state.local_privkey.sign(&kdf.challenge)
};
Ok(Handshake {
protocol_version: self.protocol_version,
state: AwaitingAuthSig {
sc_mac,
recv_cipher: ChaCha20Poly1305::new(&kdf.recv_secret.into()),
send_cipher: ChaCha20Poly1305::new(&kdf.send_secret.into()),
kdf,
local_signature,
},
})
}
}
impl Handshake<AwaitingAuthSig> {
/// Returns a verified pubkey of the remote peer.
///
/// # Errors
///
/// * if signature scheme isn't supported
pub fn got_signature(
&mut self,
auth_sig_msg: proto::p2p::AuthSigMessage,
) -> Result<PublicKey, Error> {
let pk_sum = auth_sig_msg
.pub_key
.and_then(|key| key.sum)
.ok_or_else(Error::missing_key)?;
let remote_pubkey = match pk_sum {
proto::crypto::public_key::Sum::Ed25519(ref bytes) => {
ed25519_consensus::VerificationKey::try_from(&bytes[..])
.map_err(|_| Error::signature())
},
proto::crypto::public_key::Sum::Secp256k1(_) => Err(Error::unsupported_key()),
}?;
let remote_sig = ed25519_consensus::Signature::try_from(auth_sig_msg.sig.as_slice())
.map_err(|_| Error::signature())?;
if self.protocol_version.has_transcript() {
remote_pubkey
.verify(&remote_sig, &self.state.sc_mac)
.map_err(|_| Error::signature())?;
} else {
remote_pubkey
.verify(&remote_sig, &self.state.kdf.challenge)
.map_err(|_| Error::signature())?;
}
// We've authorized.
Ok(remote_pubkey.into())
}
}
// Macro usage allows us to avoid unnecessarily cloning the Arc<AtomicBool>
// that indicates whether we need to terminate the connection.
//
// Limitation: this only checks once prior to the execution of an I/O operation
// whether we need to terminate. This should be sufficient for our purposes
// though.
macro_rules! checked_io {
($term:expr, $f:expr) => {{
if $term.load(Ordering::SeqCst) {
return Err(io::Error::new(
io::ErrorKind::Other,
"secret connection was terminated elsewhere by previous error",
));
}
let result = { $f };
if result.is_err() {
$term.store(true, Ordering::SeqCst);
}
result
}};
}
/// Encrypted connection between peers in a Tendermint network.
///
/// ## Connection integrity and failures
///
/// Due to the underlying encryption mechanism (currently [RFC 8439]), when a
/// read or write failure occurs, it is necessary to disconnect from the remote
/// peer and attempt to reconnect.
///
/// ## Half- and full-duplex connections
/// By default, a `SecretConnection` facilitates half-duplex operations (i.e.
/// one can either read from the connection or write to it at a given time, but
/// not both simultaneously).
///
/// If, however, the underlying I/O handler class implements
/// [`tendermint_std_ext::TryClone`], then you can use
/// [`SecretConnection::split`] to split the `SecretConnection` into its
/// sending and receiving halves. Each of these halves can then be used in a
/// separate thread to facilitate full-duplex communication.
///
/// ## Contracts
///
/// When reading data, data smaller than [`DATA_MAX_SIZE`] is read atomically.
///
/// [RFC 8439]: https://www.rfc-editor.org/rfc/rfc8439.html
pub struct SecretConnection<IoHandler> {
io_handler: IoHandler,
protocol_version: Version,
remote_pubkey: Option<PublicKey>,
send_state: SendState,
recv_state: ReceiveState,
terminate: Arc<AtomicBool>,
}
impl<IoHandler: Read + Write + Send + Sync> SecretConnection<IoHandler> {
/// Returns the remote pubkey. Panics if there's no key.
pub fn remote_pubkey(&self) -> PublicKey {
self.remote_pubkey.expect("remote_pubkey uninitialized")
}
/// Performs a handshake and returns a new `SecretConnection`.
///
/// # Errors
///
/// * if sharing of the pubkey fails
/// * if sharing of the signature fails
/// * if receiving the signature fails
pub fn new(
mut io_handler: IoHandler,
local_privkey: ed25519_consensus::SigningKey,
protocol_version: Version,
) -> Result<Self, Error> {
// Start a handshake process.
let local_pubkey = PublicKey::from(&local_privkey);
let (mut h, local_eph_pubkey) = Handshake::new(local_privkey, protocol_version);
// Write local ephemeral pubkey and receive one too.
let remote_eph_pubkey =
share_eph_pubkey(&mut io_handler, &local_eph_pubkey, protocol_version)?;
// Compute a local signature (also recv_cipher & send_cipher)
let mut h = h.got_key(remote_eph_pubkey)?;
let mut sc = Self {
io_handler,
protocol_version,
remote_pubkey: None,
send_state: SendState {
cipher: h.state.send_cipher.clone(),
nonce: Nonce::default(),
},
recv_state: ReceiveState {
cipher: h.state.recv_cipher.clone(),
nonce: Nonce::default(),
buffer: vec![],
},
terminate: Arc::new(AtomicBool::new(false)),
};
// Share each other's pubkey & challenge signature.
// NOTE: the data must be encrypted/decrypted using ciphers.
let auth_sig_msg = match local_pubkey {
PublicKey::Ed25519(ref pk) => {
share_auth_signature(&mut sc, pk, &h.state.local_signature)?
},
};
// Authenticate remote pubkey.
let remote_pubkey = h.got_signature(auth_sig_msg)?;
// All good!
sc.remote_pubkey = Some(remote_pubkey);
Ok(sc)
}
}
impl<IoHandler> SecretConnection<IoHandler>
where
IoHandler: TryClone,
<IoHandler as TryClone>::Error: std::error::Error + Send + Sync + 'static,
{
/// For secret connections whose underlying I/O layer implements
/// [`tendermint_std_ext::TryClone`], this attempts to split such a
/// connection into its sending and receiving halves.
///
/// This facilitates full-duplex communications when each half is used in
/// a separate thread.
///
/// ## Errors
/// Fails when the `try_clone` operation for the underlying I/O handler
/// fails.
pub fn split(self) -> Result<(Sender<IoHandler>, Receiver<IoHandler>), Error> {
let remote_pubkey = self.remote_pubkey.expect("remote_pubkey to be initialized");
Ok((
Sender {
io_handler: self
.io_handler
.try_clone()
.map_err(|e| Error::transport_clone(e.to_string()))?,
remote_pubkey,
state: self.send_state,
terminate: self.terminate.clone(),
},
Receiver {
io_handler: self.io_handler,
remote_pubkey,
state: self.recv_state,
terminate: self.terminate,
},
))
}
}
impl<IoHandler: Read> Read for SecretConnection<IoHandler> {
fn read(&mut self, data: &mut [u8]) -> io::Result<usize> {
checked_io!(
self.terminate,
read_and_decrypt(&mut self.io_handler, &mut self.recv_state, data)
)
}
}
impl<IoHandler: Write> Write for SecretConnection<IoHandler> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
checked_io!(
self.terminate,
encrypt_and_write(&mut self.io_handler, &mut self.send_state, data)
)
}
fn flush(&mut self) -> io::Result<()> {
checked_io!(self.terminate, self.io_handler.flush())
}
}
// Sending state for a `SecretConnection`.
struct SendState {
cipher: ChaCha20Poly1305,
nonce: Nonce,
}
// Receiving state for a `SecretConnection`.
struct ReceiveState {
cipher: ChaCha20Poly1305,
nonce: Nonce,
buffer: Vec<u8>,
}
/// The sending end of a [`SecretConnection`].
pub struct Sender<IoHandler> {
io_handler: IoHandler,
remote_pubkey: PublicKey,
state: SendState,
terminate: Arc<AtomicBool>,
}
impl<IoHandler> Sender<IoHandler> {
/// Returns the remote pubkey. Panics if there's no key.
pub const fn remote_pubkey(&self) -> PublicKey {
self.remote_pubkey
}
}
impl<IoHandler: Write> Write for Sender<IoHandler> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
checked_io!(
self.terminate,
encrypt_and_write(&mut self.io_handler, &mut self.state, buf)
)
}
fn flush(&mut self) -> io::Result<()> {
checked_io!(self.terminate, self.io_handler.flush())
}
}
/// The receiving end of a [`SecretConnection`].
pub struct Receiver<IoHandler> {
io_handler: IoHandler,
remote_pubkey: PublicKey,
state: ReceiveState,
terminate: Arc<AtomicBool>,
}
impl<IoHandler> Receiver<IoHandler> {
/// Returns the remote pubkey. Panics if there's no key.
pub const fn remote_pubkey(&self) -> PublicKey {
self.remote_pubkey
}
}
impl<IoHandler: Read> Read for Receiver<IoHandler> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
checked_io!(
self.terminate,
read_and_decrypt(&mut self.io_handler, &mut self.state, buf)
)
}
}
/// Returns `remote_eph_pubkey`
fn share_eph_pubkey<IoHandler: Read + Write + Send + Sync>(
handler: &mut IoHandler,
local_eph_pubkey: &EphemeralPublic,
protocol_version: Version,
) -> Result<EphemeralPublic, Error> {
// Send our pubkey and receive theirs in tandem.
// TODO(ismail): on the go side this is done in parallel, here we do send and receive after
// each other. thread::spawn would require a static lifetime.
// Should still work though.
handler.write_all(&protocol_version.encode_initial_handshake(local_eph_pubkey))?;
let mut response_len = 0_u8;
handler.read_exact(slice::from_mut(&mut response_len))?;
let mut buf = vec![0; response_len as usize];
handler.read_exact(&mut buf)?;
protocol_version.decode_initial_handshake(&buf)
}
// TODO(ismail): change from DecodeError to something more generic
// this can also fail while writing / sending
fn share_auth_signature<IoHandler: Read + Write + Send + Sync>(
sc: &mut SecretConnection<IoHandler>,
pubkey: &ed25519_consensus::VerificationKey,
local_signature: &ed25519_consensus::Signature,
) -> Result<proto::p2p::AuthSigMessage, Error> {
let buf = sc
.protocol_version
.encode_auth_signature(pubkey, local_signature);
sc.write_all(&buf)?;
let mut buf = vec![0; sc.protocol_version.auth_sig_msg_response_len()];
sc.read_exact(&mut buf)?;
sc.protocol_version.decode_auth_signature(&buf)
}
/// Return is of the form lo, hi
#[must_use]
pub fn sort32(first: [u8; 32], second: [u8; 32]) -> ([u8; 32], [u8; 32]) {
if second > first {
(first, second)
} else {
(second, first)
}
}
/// Encrypt AEAD authenticated data
#[allow(clippy::cast_possible_truncation)]
fn encrypt(
chunk: &[u8],
send_cipher: &ChaCha20Poly1305,
send_nonce: &Nonce,
sealed_frame: &mut [u8; TAG_SIZE + TOTAL_FRAME_SIZE],
) -> Result<(), Error> {
assert!(!chunk.is_empty(), "chunk is empty");
assert!(
chunk.len() <= TOTAL_FRAME_SIZE - DATA_LEN_SIZE,
"chunk is too big: {}! max: {}",
chunk.len(),
DATA_MAX_SIZE,
);
sealed_frame[..DATA_LEN_SIZE].copy_from_slice(&(chunk.len() as u32).to_le_bytes());
sealed_frame[DATA_LEN_SIZE..DATA_LEN_SIZE + chunk.len()].copy_from_slice(chunk);
let tag = send_cipher
.encrypt_in_place_detached(
GenericArray::from_slice(send_nonce.to_bytes()),
b"",
&mut sealed_frame[..TOTAL_FRAME_SIZE],
)
.map_err(Error::aead)?;
sealed_frame[TOTAL_FRAME_SIZE..].copy_from_slice(tag.as_slice());
Ok(())
}
// Writes encrypted frames of `TAG_SIZE` + `TOTAL_FRAME_SIZE`
fn encrypt_and_write<IoHandler: Write>(
io_handler: &mut IoHandler,
send_state: &mut SendState,
data: &[u8],
) -> io::Result<usize> {
let mut n = 0_usize;
for chunk in data.chunks(DATA_MAX_SIZE) {
let sealed_frame = &mut [0_u8; TAG_SIZE + TOTAL_FRAME_SIZE];
encrypt(chunk, &send_state.cipher, &send_state.nonce, sealed_frame)
.map_err(|e| io::Error::new(io::ErrorKind::Other, e.to_string()))?;
send_state.nonce.increment();
// end encryption
io_handler.write_all(&sealed_frame[..])?;
n = n
.checked_add(chunk.len())
.expect("overflow when adding chunk lengths");
}
Ok(n)
}
/// Decrypt AEAD authenticated data
fn decrypt(
ciphertext: &[u8],
recv_cipher: &ChaCha20Poly1305,
recv_nonce: &Nonce,
out: &mut [u8],
) -> Result<usize, Error> {
if ciphertext.len() < TAG_SIZE {
return Err(Error::short_ciphertext(TAG_SIZE));
}
// Split ChaCha20 ciphertext from the Poly1305 tag
let (ct, tag) = ciphertext.split_at(ciphertext.len() - TAG_SIZE);
if out.len() < ct.len() {
return Err(Error::small_output_buffer());
}
let in_out = &mut out[..ct.len()];
in_out.copy_from_slice(ct);
recv_cipher
.decrypt_in_place_detached(
GenericArray::from_slice(recv_nonce.to_bytes()),
b"",
in_out,
tag.into(),
)
.map_err(Error::aead)?;
Ok(in_out.len())
}
fn read_and_decrypt<IoHandler: Read>(
io_handler: &mut IoHandler,
recv_state: &mut ReceiveState,
data: &mut [u8],
) -> io::Result<usize> {
if !recv_state.buffer.is_empty() {
let n = cmp::min(data.len(), recv_state.buffer.len());
data.copy_from_slice(&recv_state.buffer[..n]);
let mut leftover_portion = vec![
0;
recv_state
.buffer
.len()
.checked_sub(n)
.expect("leftover calculation failed")
];
leftover_portion.clone_from_slice(&recv_state.buffer[n..]);
recv_state.buffer = leftover_portion;
return Ok(n);
}
let mut sealed_frame = [0_u8; TAG_SIZE + TOTAL_FRAME_SIZE];
io_handler.read_exact(&mut sealed_frame)?;
// decrypt the frame
let mut frame = [0_u8; TOTAL_FRAME_SIZE];
let res = decrypt(
&sealed_frame,
&recv_state.cipher,
&recv_state.nonce,
&mut frame,
);
if let Err(err) = res {
return Err(io::Error::new(io::ErrorKind::Other, err.to_string()));
}
recv_state.nonce.increment();
// end decryption
let chunk_length = u32::from_le_bytes(frame[..4].try_into().expect("chunk framing failed"));
if chunk_length as usize > DATA_MAX_SIZE {
return Err(io::Error::new(
io::ErrorKind::Other,
format!("chunk is too big: {chunk_length}! max: {DATA_MAX_SIZE}"),
));
}
let mut chunk = vec![0; chunk_length as usize];
chunk.clone_from_slice(
&frame[DATA_LEN_SIZE
..(DATA_LEN_SIZE
.checked_add(chunk_length as usize)
.expect("chunk size addition overflow"))],
);
let n = cmp::min(data.len(), chunk.len());
data[..n].copy_from_slice(&chunk[..n]);
recv_state.buffer.copy_from_slice(&chunk[n..]);
Ok(n)
}