-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy patheuler_pole.py
769 lines (659 loc) · 35.3 KB
/
euler_pole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
"""Class / utilities for Euler Pole / plate motion (models)."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Yuan-Kai Liu, Oct 2022 #
############################################################
# Recommend import:
# from mintpy.objects.euler_pole import EulerPole
#
# Reference:
# Pichon, X. L., Francheteau, J. & Bonnin, J. Plate Tectonics; Developments in Geotectonics 6;
# Hardcover – January 1, 1973. Page 28-29
# Cox, A., and Hart, R.B. (1986) Plate tectonics: How it works. Blackwell Scientific Publications,
# Palo Alto. DOI: 10.4236/ojapps.2015.54016. Page 145-156.
# Navipedia, Transformations between ECEF and ENU coordinates. [Online].
# https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates
# Goudarzi, M. A., Cocard, M. & Santerre, R. (2014), EPC: Matlab software to estimate Euler
# pole parameters, GPS Solutions, 18, 153-162, doi: 10.1007/s10291-013-0354-4
import collections
import os
import matplotlib.pyplot as plt
import numpy as np
import pyproj
from cartopy import crs as ccrs, feature as cfeature
from shapely import geometry
import mintpy
from mintpy.constants import EARTH_RADIUS
# global variables
MAS2RAD = np.pi / 3600000 / 180 # 1 mas (milli arc second) = x radian
MASY2DMY = 1e6 / 3600000 # 1 mas per year = x degree per million year
################################# Plate boundary files #######################################
PLATE_BOUNDARY_FILE = {
'GSRM' : os.path.join(mintpy.__path__[0], 'data/plate_boundary/GSRM/plate_outlines.lola'),
'MORVEL' : os.path.join(mintpy.__path__[0], 'data/plate_boundary/MORVEL/plate_outlines.lalo'),
}
################################# Plate Motion Models ########################################
# Later will be moved to a separate script `pmm.py` in plate motion package
# 1). ITRF2014-PMM defined in Altamimi et al. (2017)
# Reference frame: ITRF2014
Tag = collections.namedtuple('Tag', 'Abbrev num_site omega_x omega_y omega_z omega wrms_e wrms_n')
ITRF2014_PMM = {
'Antartica' : Tag('ANTA' , 7, -0.248, -0.324, 0.675, 0.219, 0.20, 0.16),
'Arabia' : Tag('ARAB' , 5, 1.154, -0.136, 1.444, 0.515, 0.36, 0.43),
'Australia' : Tag('AUST' , 36, 1.510, 1.182, 1.215, 0.631, 0.24, 0.20),
'Eurasia' : Tag('EURA' , 97, -0.085, -0.531, 0.770, 0.261, 0.23, 0.19),
'India' : Tag('INDI' , 3, 1.154, -0.005, 1.454, 0.516, 0.21, 0.21),
'Nazca' : Tag('NAZC' , 2, -0.333, -1.544, 1.623, 0.629, 0.13, 0.19),
'NorthAmerica' : Tag('NOAM' , 72, 0.024, -0.694, -0.063, 0.194, 0.23, 0.28),
'Nubia' : Tag('NUBI' , 24, 0.099, -0.614, 0.733, 0.267, 0.28, 0.36),
'Pacific' : Tag('PCFC' , 18, -0.409, 1.047, -2.169, 0.679, 0.36, 0.31),
'SouthAmerica' : Tag('SOAM' , 30, -0.270, -0.301, -0.140, 0.119, 0.34, 0.35),
'Somalia' : Tag('SOMA' , 3, -0.121, -0.794, 0.884, 0.332, 0.32, 0.30),
}
PMM_UNIT = {
'omega' : 'deg/Ma', # degree per megayear or one-million-year
'omega_x' : 'mas/yr', # milli-arcsecond per year
'omega_y' : 'mas/yr', # milli-arcsecond per year
'omega_z' : 'mas/yr', # milli-arcsecond per year
'wrms_e' : 'mm/yr', # milli-meter per year, weighted root mean scatter
'wrms_n' : 'mm/yr', # milli-meter per year, weighted root mean scatter
}
# 2). GSRMv2.1 defined in Kreemer et al. (2014)
# Reference frame: IGS08
# (unit: Lat: °N; Lon: °E; omega: °/Ma)
Tag = collections.namedtuple('Tag', 'Abbrev Lat Lon omega')
GSRM_V21_PMM = {
'Africa' : Tag('AF' , 49.66 , -78.08 , 0.285),
'Amur' : Tag('AM' , 61.64 , -101.29 , 0.287),
'Antarctica' : Tag('AN' , 60.08 , -120.14 , 0.234),
'Arabia' : Tag('AR' , 51.12 , -19.87 , 0.484),
'AegeanSea' : Tag('AS' , 47.78 , 59.86 , 0.253),
'Australia' : Tag('AU' , 33.31 , 36.38 , 0.639),
'BajaCalifornia' : Tag('BC' , -63.04 , 104.02 , 0.640),
'Bering' : Tag('BG' , -40.62 , -53.84 , 0.333),
'Burma' : Tag('BU' , -4.38 , -76.17 , 2.343),
'Caribbean' : Tag('CA' , 37.84 , -96.49 , 0.290),
'Caroline' : Tag('CL' , -76.41 , 30.22 , 0.552),
'Cocos' : Tag('CO' , 27.21 , -124.02 , 1.169),
'Capricorn' : Tag('CP' , 42.13 , 24.28 , 0.622),
'Danakil' : Tag('DA' , 21.80 , 36.05 , 2.497),
'Easter' : Tag('EA' , 25.14 , 67.55 , 11.331),
'Eurasia' : Tag('EU' , 55.38 , -95.41 , 0.271),
'Galapagos' : Tag('GP' , 2.83 , 81.26 , 5.473),
'Gonave' : Tag('GV' , 23.89 , -84.86 , 0.476),
'India' : Tag('IN' , 50.95 , -8.00 , 0.524),
'JuandeFuca' : Tag('JF' , -37.71 , 59.44 , 0.977),
'JuanFernandez' : Tag('JZ' , 34.33 , 70.76 , 22.370),
'Lwandle' : Tag('LW' , 52.20 , -60.68 , 0.273),
'Mariana' : Tag('MA' , 11.20 , 142.82 , 2.165),
'NorthAmerica' : Tag('NA' , 2.19 , -83.75 , 0.219),
'NorthBismarck' : Tag('NB' , -30.20 , 135.30 , 1.201),
'Niuafo`ou' : Tag('NI' , -3.51 , -174.04 , 3.296),
'Nazca' : Tag('NZ' , 49.05 , -102.13 , 0.611),
'Okhotsk' : Tag('OK' , 28.80 , -90.91 , 0.209),
'Okinawa' : Tag('ON' , 39.11 , 145.94 , 1.361),
'Pacific' : Tag('PA' , -63.09 , 109.63 , 0.663),
'Panama' : Tag('PM' , 16.55 , -84.30 , 1.392),
'PuertoRico' : Tag('PR' , 27.81 , -81.51 , 0.502),
'PhilippineSea' : Tag('PS' , -46.62 , -28.39 , 0.895),
'Rivera' : Tag('RI' , 20.27 , -107.10 , 4.510),
'Rovuma' : Tag('RO' , 51.72 , -69.88 , 0.270),
'SouthAmerica' : Tag('SA' , -14.10 , -117.86 , 0.123),
'SouthBismarck' : Tag('SB' , 6.91 , -32.41 , 6.665),
'Scotia' : Tag('SC' , 23.02 , -98.78 , 0.122),
'Sinai' : Tag('SI' , 53.34 , -7.27 , 0.476),
'Sakishima' : Tag('SK' , 27.31 , 128.68 , 7.145),
'Shetland' : Tag('SL' , 66.05 , 134.03 , 1.710),
'Somalia' : Tag('SO' , 47.59 , -94.36 , 0.346),
'SolomonSea' : Tag('SS' , -3.33 , 130.60 , 1.672),
'Satunam' : Tag('ST' , 36.68 , 135.30 , 2.846),
'Sunda' : Tag('SU' , 51.11 , -91.75 , 0.350),
'Sandwich' : Tag('SW' , -30.11 , -35.58 , 1.369),
'Tonga' : Tag('TO' , 26.38 , 4.27 , 8.853),
'Victoria' : Tag('VI' , 44.96 , -102.19 , 0.330),
'Woodlark' : Tag('WL' , -1.62 , 130.63 , 1.957),
'Yangtze' : Tag('YA' , 64.76 , -109.19 , 0.335),
}
# 3). NNR-MORVEL56 defined in Argus et al. (2011)
# (unit: Lat: °N; Lon: °E; omega: °/Ma)
# Note: we use "NU", instead of "nb" from Argus et al. (2011), for Nubia plate
# to distinguish from "NB" for North Bismarck plate.
Tag = collections.namedtuple('Tag', 'Abbrev Lat Lon omega')
NNR_MORVEL56_PMM = {
'Amur' : Tag('AM' , 63.17 , -122.82 , 0.297),
'Antarctica' : Tag('AN' , 65.42 , -118.11 , 0.250),
'Arabia' : Tag('AR' , 48.88 , -8.49 , 0.559),
'Australia' : Tag('AU' , 33.86 , 37.94 , 0.632),
'Capricorn' : Tag('CP' , 44.44 , 23.09 , 0.608),
'Caribbean' : Tag('CA' , 35.20 , -92.62 , 0.286),
'Cocos' : Tag('CO' , 26.93 , -124.31 , 1.198),
'Eurasia' : Tag('EU' , 48.85 , -106.50 , 0.223),
'India' : Tag('IN' , 50.37 , -3.29 , 0.544),
'JuandeFuca' : Tag('JF' , -38.31 , 60.04 , 0.951),
'Lwandle' : Tag('LW' , 51.89 , -69.52 , 0.286),
'Macquarie' : Tag('MQ' , 49.19 , 11.05 , 1.144),
'Nazca' : Tag('NZ' , 46.23 , -101.06 , 0.696),
'NorthAmerica' : Tag('NA' , -4.85 , -80.64 , 0.209),
'Nubia' : Tag('NU' , 47.68 , -68.44 , 0.292),
'Pacific' : Tag('PA' , -63.58 , 114.70 , 0.651),
'PhilippineSea' : Tag('PS' , -46.02 , -31.36 , 0.910),
'Rivera' : Tag('RI' , 20.25 , -107.29 , 4.536),
'Sandwich' : Tag('SW' , -29.94 , -36.87 , 1.362),
'Scotia' : Tag('SC' , 22.52 , -106.15 , 0.146),
'Somalia' : Tag('SM' , 49.95 , -84.52 , 0.339),
'SouthAmerica' : Tag('SA' , -22.62 , -112.83 , 0.109),
'Sunda' : Tag('SU' , 50.06 , -95.02 , 0.337),
'Sur' : Tag('SR' , -32.50 , -111.32 , 0.107),
'Yangtze' : Tag('YZ' , 63.03 , -116.62 , 0.334),
'AegeanSea' : Tag('AS' , 19.43 , 122.87 , 0.124),
'Altiplano' : Tag('AP' , -6.58 , -83.98 , 0.488),
'Anatolia' : Tag('AT' , 40.11 , 26.66 , 1.210),
'BalmoralReef' : Tag('BR' , -63.74 , 142.06 , 0.490),
'BandaSea' : Tag('BS' , -1.49 , 121.64 , 2.475),
'BirdsHead' : Tag('BH' , -40.00 , 100.50 , 0.799),
'Burma' : Tag('BU' , -6.13 , -78.10 , 2.229),
'Caroline' : Tag('CL' , -72.78 , 72.05 , 0.607),
'ConwayReef' : Tag('CR' , -20.40 , 170.53 , 3.923),
'Easter' : Tag('EA' , 24.97 , 67.53 , 11.334),
'Futuna' : Tag('FT' , -16.33 , 178.07 , 5.101),
'Galapagos' : Tag('GP' , 2.53 , 81.18 , 5.487),
'JuanFernandez' : Tag('JZ' , 34.25 , 70.74 , 22.368),
'Kermadec' : Tag('KE' , 39.99 , 6.46 , 2.347),
'Manus' : Tag('MN' , -3.67 , 150.27 , 51.569),
'Maoke' : Tag('MO' , 14.25 , 92.67 , 0.774),
'Mariana' : Tag('MA' , 11.05 , 137.84 , 1.306),
'MoluccaSea' : Tag('MS' , 2.15 , -56.09 , 3.566),
'NewHebrides' : Tag('NH' , 0.57 , -6.60 , 2.469),
'Niuafo`ou' : Tag('NI' , -3.29 , -174.49 , 3.314),
'NorthAndes' : Tag('ND' , 17.73 , -122.68 , 0.116),
'NorthBismarck' : Tag('NB' , -45.04 , 127.64 , 0.856),
'Okhotsk' : Tag('OK' , 30.30 , -92.28 , 0.229),
'Okinawa' : Tag('ON' , 36.12 , 137.92 , 2.539),
'Panama' : Tag('PM' , 31.35 , -113.90 , 0.317),
'Shetland' : Tag('SL' , 50.71 , -143.47 , 0.268),
'SolomonSea' : Tag('SS' , -2.87 , 130.62 , 1.703),
'SouthBismarck' : Tag('SB' , 6.88 , -31.89 , 8.111),
'Timor' : Tag('TI' , -4.44 , 113.50 , 1.864),
'Tonga' : Tag('TO' , 25.87 , 4.48 , 8.942),
'Woodlark' : Tag('WL' , 0.10 , 128.52 , 1.744),
}
#################################### EulerPole class begin #############################################
# Define the Euler pole class
EXAMPLE = """Define an Euler pole:
Method 1 - Use an Euler vector [wx, wy, wz]
wx/y/z - float, angular velocity in x/y/z-axis [mas/yr or deg/Ma]
Method 2 - Use an Euler Pole lat/lon and rotation rate [lat, lon, rot_rate]
lat/lon - float, Euler pole latitude/longitude [degree]
rot_rate - float, magnitude of the angular velocity [deg/Ma or mas/yr]
1) define rotation vection as from the center of sphere to the pole lat/lon and outward;
2) positive for conterclockwise rotation when looking from outside along the rotation vector.
Example:
# equivalent ways to describe the Eurasian plate in the ITRF2014 plate motion model
EulerPole(wx=-0.085, wy=-0.531, wz=0.770, unit='mas/yr')
EulerPole(wx=-0.024, wy=-0.148, wz=0.214, unit='deg/Ma')
EulerPole(pole_lat=55.070, pole_lon=-99.095, rot_rate=0.939, unit='mas/yr')
EulerPole(pole_lat=55.070, pole_lon=-99.095, rot_rate=0.261, unit='deg/Ma')
EulerPole(pole_lat=-55.070, pole_lon=80.905, rot_rate=-0.939, unit='mas/yr')
"""
class EulerPole:
"""EulerPole object to compute velocity for a given tectonic plate.
Example:
# compute velocity of the Eurasia plate in ITRF2014-PMM from Altamimi et al. (2017)
pole_obj = EulerPole(pole_lat=55.070, pole_lon=-99.095, rot_rate=0.939, unit='mas/yr')
pole_obj.print_info()
vx, vy, vz = pole_obj.get_velocity_xyz(lats, lons, alt=0.0) # in ECEF xyz coordinate
ve, vn, vu = pole_obj.get_velocity_enu(lats, lons, alt=0.0) # in local ENU coordinate
"""
def __init__(self, wx=None, wy=None, wz=None, pole_lat=None, pole_lon=None, rot_rate=None,
unit='mas/yr', name=None):
# check - unit
if unit.lower().startswith('mas'):
unit = 'mas/yr'
elif unit.lower().startswith('deg'):
unit = 'deg/Ma'
# convert input deg/Ma to mas/yr for internal calculation
wx = wx / MASY2DMY if wx else None
wy = wy / MASY2DMY if wy else None
wz = wz / MASY2DMY if wz else None
rot_rate = rot_rate / MASY2DMY if rot_rate else None
else:
raise ValueError(f'Unrecognized rotation rate unit: {unit}! Use mas/yr or deg/Ma')
# calculate Euler vector and pole
if all([wx, wy, wz]):
# calc Euler pole from vector
pole_lat, pole_lon, rot_rate = cart2sph(wx, wy, wz)
elif all([pole_lat, pole_lon, rot_rate]):
# calc Euler vector from pole
wx, wy, wz = sph2cart(pole_lat, pole_lon, r=rot_rate)
else:
raise ValueError(f'Incomplete Euler Pole input!\n{EXAMPLE}')
# save member variables
self.name = name
self.poleLat = pole_lat # Euler pole latitude [degree]
self.poleLon = pole_lon # Euler pole longitude [degree]
self.rotRate = rot_rate # angular rotation rate [mas/yr]
self.wx = wx # angular velocity x [mas/yr]
self.wy = wy # angular velocity y [mas/yr]
self.wz = wz # angular velocity z [mas/yr]
def __repr__(self):
msg = f'{self.__class__.__name__}(name={self.name}, poleLat={self.poleLat}, poleLon={self.poleLon}, '
msg += f'rotRate={self.rotRate}, wx={self.wx}, wy={self.wy}, wz={self.wz}, unit=mas/yr)'
return msg
def __add__(self, other):
"""Add two Euler pole objects.
Example:
pole1 = EulerPole(...)
pole2 = EulerPole(...)
pole3 = pol2 + pol1
"""
new_wx = self.wx + other.wx
new_wy = self.wy + other.wy
new_wz = self.wz + other.wz
return EulerPole(wx=new_wx, wy=new_wy, wz=new_wz)
def __sub__(self, other):
"""Subtract two Euler pole objects.
Example:
pole1 = EulerPole(...)
pole2 = EulerPole(...)
pole3 = pol2 - pol1
"""
new_wx = self.wx - other.wx
new_wy = self.wy - other.wy
new_wz = self.wz - other.wz
return EulerPole(wx=new_wx, wy=new_wy, wz=new_wz)
def __neg__(self):
"""Negative of an Euler pole object.
Example:
pole1 = EulerPole(...)
pole2 = -pol1
"""
new_wx = -self.wx
new_wy = -self.wy
new_wz = -self.wz
return EulerPole(wx=new_wx, wy=new_wy, wz=new_wz)
def print_info(self):
"""Print the Euler pole information.
"""
# maximum digit
vals = [self.poleLat, self.poleLon, self.rotRate, self.wx, self.wy, self.wz]
md = len(str(int(np.max(np.abs(vals))))) + 5
md += 1 if any(x < 0 for x in vals) else 0
print('\n------------------ Euler Pole description ------------------')
print('Spherical expression:')
print(f' Pole Latitude : {self.poleLat:{md}.4f} deg')
print(f' Pole Longitude : {self.poleLon:{md}.4f} deg')
print(f' Rotation rate : {self.rotRate * MASY2DMY:{md}.4f} deg/Ma = {self.rotRate:{md}.4f} mas/yr')
print('Cartesian expression (angular velocity vector):')
print(f' wx : {self.wx * MASY2DMY:{md}.4f} deg/Ma = {self.wx:{md}.4f} mas/yr')
print(f' wy : {self.wy * MASY2DMY:{md}.4f} deg/Ma = {self.wy:{md}.4f} mas/yr')
print(f' wz : {self.wz * MASY2DMY:{md}.4f} deg/Ma = {self.wz:{md}.4f} mas/yr')
print('------------------------------------------------------------\n')
def get_velocity_xyz(self, lat, lon, alt=0.0, ellps=True, print_msg=True):
"""Compute cartesian velocity (vx, vy, vz) of the Euler Pole at point(s) of interest.
Parameters: lat - float / 1D/2D np.ndarray, points of interest (latitude) [degree]
lon - float / 1D/2D np.ndarray, points of interest (longitude) [degree]
alt - float / 1D/2D np.ndarray, points of interest (altitude) [meter]
ellps - bool, consider ellipsoidal Earth projection
Returns: vx - float / 1D/2D np.ndarray, ECEF x linear velocity [meter/year]
vy - float / 1D/2D np.ndarray, ECEF y linear velocity [meter/year]
vz - float / 1D/2D np.ndarray, ECEF z linear velocity [meter/year]
"""
# check input lat/lon data type (scalar / array) and shape
poi_shape = lat.shape if isinstance(lat, np.ndarray) else None
# convert lat/lon into x/y/z
# Note: the conversion assumes either a spherical or spheroidal Earth, tests show that
# using a ellipsoid as defined in WGS84 produce results closer to the UNAVCO website
# calculator, which also uses the WGS84 ellipsoid.
if ellps:
if print_msg:
print('assume a spheroidal Earth as defined in WGS84')
x, y, z = coord_llh2xyz(lat, lon, alt)
else:
if print_msg:
print(f'assume a spherical Earth with radius={EARTH_RADIUS} m')
x, y, z = sph2cart(lat, lon, alt+EARTH_RADIUS)
# ensure matrix is flattened
if poi_shape is not None:
x = x.flatten()
y = y.flatten()
z = z.flatten()
# compute the cartesian linear velocity (i.e., ECEF) in meter/year as:
#
# V_xyz = Omega x R_i
#
# where R_i is location vector at point i
xyz = np.array([x, y, z], dtype=np.float32)
omega = np.array([self.wx, self.wy, self.wz]) * MAS2RAD
vx, vy, vz = np.cross(omega, xyz.T).T.reshape(xyz.shape)
# reshape to the original shape of lat/lon
if poi_shape is not None:
vx = vx.reshape(poi_shape)
vy = vy.reshape(poi_shape)
vz = vz.reshape(poi_shape)
return vx, vy, vz
def get_velocity_enu(self, lat, lon, alt=0.0, ellps=True, print_msg=True):
"""Compute the spherical velocity (ve, vn, vu) of the Euler Pole at point(s) of interest.
Parameters: lat - float / 1D/2D np.ndarray, points of interest (latitude) [degree]
lon - float / 1D/2D np.ndarray, points of interest (longitude) [degree]
alt - float / 1D/2D np.ndarray, points of interest (altitude) [meter]
ellps - bool, consider ellipsoidal Earth projection
Returns: ve - float / 1D/2D np.ndarray, east linear velocity [meter/year]
vn - float / 1D/2D np.ndarray, north linear velocity [meter/year]
vu - float / 1D/2D np.ndarray, up linear velocity [meter/year]
"""
# calculate ECEF velocity
vx, vy, vz = self.get_velocity_xyz(lat, lon, alt=alt, ellps=ellps, print_msg=print_msg)
# convert ECEF to ENU velocity via matrix rotation: V_enu = T * V_xyz
ve, vn, vu = transform_xyz_enu(lat, lon, x=vx, y=vy, z=vz)
# enforce zero vertical velocitpy when ellps=False
# to avoid artifacts due to numerical precision
if not ellps:
if isinstance(lat, np.ndarray):
vu[:] = 0
else:
vu = 0
return ve, vn, vu
#################################### EulerPole class end ###############################################
#################################### Utility functions #################################################
# Utility functions for the math/geometry operations of Euler Pole and linear velocity
# reference: https://yuankailiu.github.io/assets/docs/Euler_pole_doc.pdf
def cart2sph(rx, ry, rz):
"""Convert cartesian coordinates to spherical.
Parameters: rx/y/z - float / np.ndarray, angular distance in X/Y/Z direction [any units of distance]
Returns: lat/lon - float / np.ndarray, latitude / longitude [degree]
r - float / np.ndarray, radius [same unit as rx/y/z]
Examples:
# convert xyz coord to spherical coord
lat, lon, r = cart2sph(x, y, z)
# convert Euler vector (in cartesian) to Euler pole (in spherical)
pole_lat, pole_lon, rot_rate = cart2sph(wx, wy, wz)
"""
r = np.sqrt(rx**2 + ry**2 + rz**2)
lat = np.rad2deg(np.arcsin(rz / r))
lon = np.rad2deg(np.arctan2(ry, rx))
return lat, lon, r
def sph2cart(lat, lon, r=1):
"""Convert spherical coordinates to cartesian.
Parameters: lat/lon - float / np.ndarray, latitude / longitude [degree]
r - float / np.ndarray, radius [any units of angular distance]
Returns: rx/y/z - float / np.ndarray, angular distance in X/Y/Z direction [same unit as r]
Examples:
# convert spherical coord to xyz coord
x, y, z = sph2cart(lat, lon, r=radius)
# convert Euler pole (in spherical) to Euler vector (in cartesian)
wx, wy, wz = sph2cart(pole_lat, pole_lon, r=rot_rate)
"""
rx = r * np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(lon))
ry = r * np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(lon))
rz = r * np.sin(np.deg2rad(lat))
return rx, ry, rz
def coord_llh2xyz(lat, lon, alt):
"""Convert coordinates from WGS84 lat/long/hgt to ECEF x/y/z.
Parameters: lat - float / list(float) / np.ndarray, latitude [degree]
lon - float / list(float) / np.ndarray, longitude [degree]
alt - float / list(float) / np.ndarray, altitude [meter]
Returns: x/y/z - float / list(float) / np.ndarray, ECEF coordinate [meter]
"""
# ensure same type between alt and lat/lon
if isinstance(lat, np.ndarray) and not isinstance(alt, np.ndarray):
alt *= np.ones_like(lat)
elif isinstance(lat, list) and not isinstance(alt, list):
alt = [alt] * len(lat)
# construct pyproj transform object
transformer = pyproj.Transformer.from_crs(
{"proj":'latlong', "ellps":'WGS84', "datum":'WGS84'},
{"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'},
)
# apply coordinate transformation
x, y, z = transformer.transform(lon, lat, alt, radians=False)
return x, y, z
def transform_xyz_enu(lat, lon, x=None, y=None, z=None, e=None, n=None, u=None):
"""Transform between ECEF (global xyz) and ENU at given locations (lat, lon) via matrix rotation.
Reference:
Navipedia, https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates
Cox, A., and Hart, R.B. (1986) Plate tectonics: How it works. Blackwell Scientific Publications,
Palo Alto, doi: 10.4236/ojapps.2015.54016. Page 145-156
Parameters: lat/lon - float / np.ndarray, latitude/longitude at location(s) [degree]
x/y/z - float / np.ndarray, x/y/z component at location(s) [e.g., length, velocity]
e/n/u - float / np.ndarray, east/north/up component at location(s) [e.g., length, velocity]
Returns: e/n/u if given x/y/z
x/y/z if given e/n/u
"""
# convert the unit from degree to radian
lat = np.deg2rad(lat)
lon = np.deg2rad(lon)
# transformation via matrix rotation:
# V_enu = T * V_xyz
# V_xyz = T^-1 * V_enu
#
# Equilevant 3D matrix code is as below:
# V_enu = np.diagonal(
# np.matmul(
# T.reshape([-1,3]),
# V_xyz.T,
# ).reshape([3, npts, npts], order='F'),
# axis1=1,
# axis2=2,
# ).T
# To avoid this complex matrix operation above, we calculate for each element as below:
if all(i is not None for i in [x, y, z]):
# cart2enu
e = - np.sin(lon) * x \
+ np.cos(lon) * y
n = - np.sin(lat) * np.cos(lon) * x \
- np.sin(lat) * np.sin(lon) * y \
+ np.cos(lat) * z
u = np.cos(lat) * np.cos(lon) * x \
+ np.cos(lat) * np.sin(lon) * y \
+ np.sin(lat) * z
return e, n, u
elif all(i is not None for i in [e, n, u]):
# enu2cart
x = - np.sin(lon) * e \
- np.cos(lon) * np.sin(lat) * n \
+ np.cos(lon) * np.cos(lat) * u
y = np.cos(lon) * e \
- np.sin(lon) * np.sin(lat) * n \
+ np.sin(lon) * np.cos(lat) * u
z = np.cos(lat) * n \
+ np.sin(lat) * u
return x, y, z
else:
raise ValueError('Input (x,y,z) or (e,n,u) is NOT complete!')
#################################### Utility for plotting ##############################################
# Utility for plotting the plate motion on a globe
# check usage: https://github.com/yuankailiu/utils/blob/main/notebooks/PMM_plot.ipynb
# Later will be moved to a separate script `plot_utils.py` in plate motion package
def read_plate_outline(pmm_name='GSRM', plate_name=None):
"""Read the plate boundaries for the given plate motion model.
Parameters: pmm_name - str, plate motion (model) name
plate_name - str, plate name of interest, return all plates if None
Returns: outline - dict, a dictionary that contains lists of vertices in lat/lon for all plates
OR shapely.geometry.polygon.Polygon object, boundary of the given "plate".
"""
# check input
if 'GSRM' in pmm_name:
pmm_name = 'GSRM'
pmm_dict = GSRM_V21_PMM
elif 'MORVEL' in pmm_name:
pmm_name = 'MORVEL'
pmm_dict = NNR_MORVEL56_PMM
else:
msg = f'Un-recognized plate motion model: {pmm_name}!'
msg += '\nAvailable models: GSRM, MORVEL.'
raise ValueError(msg)
# plate boundary file
plate_boundary_file = PLATE_BOUNDARY_FILE[pmm_name]
coord_order = os.path.basename(plate_boundary_file).split('.')[-1]
if coord_order not in ['lalo', 'lola']:
raise ValueError(f'Can NOT recognize the lat/lon order from the file extension: .{coord_order}!')
# dict to convert plate abbreviation to name
plate_abbrev2name = {}
for key, val in pmm_dict.items():
plate_abbrev2name[val.Abbrev.upper()] = key
# read the plate outlines file, save them to a dictionary {plate_A: [vertices], ..., ..., ...}
outlines = {}
with open(plate_boundary_file) as f:
lines = f.readlines()
key, vertices = None, None
# loop over lines to read
for line in lines:
# whether we meet a new plate name abbreviation
if line.startswith('> ') or line.startswith('# ') or len(line.split()) == 1:
# whether to add the previous plate to the dictionary
if key and vertices:
pname = plate_abbrev2name[key]
outlines[pname] = np.array(vertices)
# identify the new plate name abbreviation
if line.startswith('> '):
key = line.split('> ')[1]
elif line.startswith('# '):
key = line.split('# ')[1]
else:
key = str(line)
# remove the line change string
if key.endswith('\n'):
key = key.split('\n')[0]
# new vertices for the new plate
vertices = []
# get plate outline vertices
else:
vert = np.array(line.split()).astype(float)
if coord_order == 'lola':
vert = np.flip(vert)
vertices.append(vert)
# outline of a specific plate
if plate_name:
if plate_name not in plate_abbrev2name.values():
plate_abbrev = pmm_dict[plate_name].Abbrev
raise ValueError(f'Can NOT found plate {plate_name} ({plate_abbrev}) in file: {plate_boundary_file}!')
# convert list into shapely polygon object
# for easy use
outline = geometry.Polygon(outlines[plate_name])
else:
outline = outlines
return outline
def plot_plate_motion(plate_boundary, epole_obj, center_lalo=None, qscale=200, qunit=50,
satellite_height=1e6, figsize=[5, 5], **kwargs):
"""Plot the globe map wityh plate boundary, quivers on some points.
Parameters: plate_boundary - shapely.geometry.Polygon object
epole_obj - mintpy.objects.euler_pole.EulerPole object
center_lalo - list of 2 float, center the map at this latitude, longitude
qscale - float, scaling factor of the quiver
qunit - float, length of the quiver legend in mm/yr
satellite_height - height of the perspective view looking in meters
kwargs - dict, dictionary for plotting
Returns: fig, ax - matplotlib figure and axes objects
Examples:
from matplotlib import pyplot as plt
from mintpy.objects import euler_pole
from shapely import geometry
# build EulerPole object
plate_pmm = euler_pole.ITRF2014_PMM['Arabia']
epole_obj = euler_pole.EulerPole(wx=plate_pmm.omega_x, wy=plate_pmm.omega_y, wz=plate_pmm.omega_z)
# read plate boundary
plate_boundary = euler_pole.read_plate_outline('GSRM', 'Arabia')
# plot plate motion
fig, ax = euler_pole.plot_plate_motion(plate_boundary, epole_obj)
plt.show()
"""
def _sample_coords_within_polygon(polygon_obj, ny=10, nx=10):
"""Make a set of points inside the defined sphericalpolygon object.
Parameters: polygon_obj - shapely.geometry.Polygon, a polygon object in lat/lon.
ny - int, number of initial sample points in the y (lat) direction.
nx - int, number of initial sample points in the x (lon) direction.
Returns: sample_lats - 1D np.ndarray, sample coordinates in the y (lat) direction.
sample_lons - 1D np.ndarray, sample coordinates in the x (lon) direction.
"""
# generate sample point grid
poly_lats = np.array(polygon_obj.exterior.coords)[:,0]
poly_lons = np.array(polygon_obj.exterior.coords)[:,1]
cand_lats, cand_lons = np.meshgrid(
np.linspace(np.min(poly_lats), np.max(poly_lats), ny),
np.linspace(np.min(poly_lons), np.max(poly_lons), nx),
)
cand_lats = cand_lats.flatten()
cand_lons = cand_lons.flatten()
# select points inside the polygon
flag = np.zeros(cand_lats.size, dtype=np.bool_)
for i, (cand_lat, cand_lon) in enumerate(zip(cand_lats, cand_lons)):
if polygon_obj.contains(geometry.Point(cand_lat, cand_lon)):
flag[i] = True
sample_lats = cand_lats[flag]
sample_lons = cand_lons[flag]
return sample_lats, sample_lons
# default plot settings
kwargs['c_ocean'] = kwargs.get('c_ocean', 'w')
kwargs['c_land'] = kwargs.get('c_land', 'lightgray')
kwargs['c_plate'] = kwargs.get('c_plate', 'mistyrose')
kwargs['lw_coast'] = kwargs.get('lw_coast', 0.5)
kwargs['lw_pbond'] = kwargs.get('lw_pbond', 1)
kwargs['lc_pbond'] = kwargs.get('lc_pbond', 'coral')
kwargs['alpha_plate'] = kwargs.get('alpha_plate', 0.4)
kwargs['grid_ls'] = kwargs.get('grid_ls', '--')
kwargs['grid_lw'] = kwargs.get('grid_lw', 0.3)
kwargs['grid_lc'] = kwargs.get('grid_lc', 'gray')
kwargs['qnum'] = kwargs.get('qnum', 6)
# point of interest
kwargs['pts_lalo'] = kwargs.get('pts_lalo', None)
kwargs['pts_marker'] = kwargs.get('pts_marker', '^')
kwargs['pts_ms'] = kwargs.get('pts_ms', 20)
kwargs['pts_mfc'] = kwargs.get('pts_mfc', 'r')
kwargs['pts_mec'] = kwargs.get('pts_mec', 'k')
kwargs['pts_mew'] = kwargs.get('pts_mew', 1)
# map projection
# based on: 1) map center and 2) satellite_height
if not center_lalo:
if kwargs['pts_lalo']:
center_lalo = kwargs['pts_lalo']
else:
center_lalo = np.array(plate_boundary.centroid.coords)[0]
map_proj = ccrs.NearsidePerspective(center_lalo[1], center_lalo[0], satellite_height=satellite_height)
# make a base map from cartopy
fig, ax = plt.subplots(figsize=figsize, subplot_kw=dict(projection=map_proj))
ax.set_global()
ax.gridlines(color=kwargs['grid_lc'],
linestyle=kwargs['grid_ls'],
linewidth=kwargs['grid_lw'],
xlocs=np.arange(-180,180,30),
ylocs=np.linspace(-80,80,10))
ax.add_feature(cfeature.OCEAN, color=kwargs['c_ocean'])
ax.add_feature(cfeature.LAND, color=kwargs['c_land'])
ax.add_feature(cfeature.COASTLINE, linewidth=kwargs['lw_coast'])
# add the plate polygon
if plate_boundary:
poly_lats = np.array(plate_boundary.exterior.coords)[:, 0]
poly_lons = np.array(plate_boundary.exterior.coords)[:, 1]
ax.plot(poly_lons, poly_lats, color=kwargs['lc_pbond'], transform=ccrs.Geodetic(), linewidth=kwargs['lw_pbond'])
ax.fill(poly_lons, poly_lats, color=kwargs['c_plate'], transform=ccrs.Geodetic(), alpha=kwargs['alpha_plate'])
# compute the plate motion from Euler rotation
if epole_obj:
# select sample points inside the polygon
sample_lats, sample_lons = _sample_coords_within_polygon(plate_boundary, ny=kwargs['qnum'], nx=kwargs['qnum'])
# calculate plate motion on sample points
ve, vn = epole_obj.get_velocity_enu(lat=sample_lats, lon=sample_lons)[:2]
# scale from m/yr to mm/yr
ve *= 1e3
vn *= 1e3
norm = np.sqrt(ve**2 + vn**2)
# correcting for "East" further toward polar region; re-normalize ve, vn
ve /= np.cos(np.deg2rad(sample_lats))
renorm = np.sqrt(ve**2 + vn**2)/norm
ve /= renorm
vn /= renorm
# ---------- plot inplate vectors --------------
q = ax.quiver(sample_lons, sample_lats, ve, vn,
transform=ccrs.PlateCarree(), scale=qscale,
width=.0075, color='coral', angles="xy")
# legend
# put an empty title for extra whitepace at the top
ax.set_title(' ', pad=10)
ax.quiverkey(q, X=0.3, Y=0.9, U=qunit, label=f'{qunit} mm/yr', labelpos='E', coordinates='figure')
# add custom points (e.g., show some points of interest)
if kwargs['pts_lalo']:
ax.scatter(kwargs['pts_lalo'][1], kwargs['pts_lalo'][0],
marker=kwargs['pts_marker'], s=kwargs['pts_ms'],
fc=kwargs['pts_mfc'], ec=kwargs['pts_mec'],
lw=kwargs['pts_mew'], transform=ccrs.PlateCarree())
return fig, ax