-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathstackDict.py
926 lines (787 loc) · 41.1 KB
/
stackDict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
"""Classes for HDF5/MintPy file creation / writing."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Heresh Fattahi, Zhang Yunjun, 2017 #
############################################################
# Recommend import:
# from mintpy.objects.stackDict import (
# geometryDict,
# ifgramStackDict,
# ifgramDict,
# )
import os
import time
import warnings
import h5py
import numpy as np
from skimage.transform import resize
from mintpy.multilook import multilook_data
from mintpy.objects import (
DATA_TYPE_DICT,
GEOMETRY_DSET_NAMES,
IFGRAM_DSET_NAMES,
)
from mintpy.utils import attribute as attr, ptime, readfile, utils0 as ut
########################################################################################
class ifgramStackDict:
"""
IfgramStack object for a set of InSAR pairs from the same platform and track.
Example:
from mintpy.objects.insarobj import ifgramStackDict
pairsDict = {('20160524','20160530'):ifgramObj1,
('20160524','20160605'):ifgramObj2,
('20160524','20160611'):ifgramObj3,
('20160530','20160605'):ifgramObj4,
...
}
stackObj = ifgramStackDict(pairsDict=pairsDict)
stackObj.write2hdf5(outputFile='ifgramStack.h5', box=(200,500,300,600))
"""
def __init__(self, name='ifgramStack', pairsDict=None, dsName0=IFGRAM_DSET_NAMES[0]):
self.name = name
self.pairsDict = pairsDict
self.dsName0 = dsName0 #reference dataset name, unwrapPhase OR azimuthOffset OR rangeOffset
def get_size(self, box=None, xstep=1, ystep=1, geom_obj=None):
"""Get size in 3D"""
num_ifgram = len(self.pairsDict)
ifgramObj = [v for v in self.pairsDict.values()][0]
length, width = ifgramObj.get_size(family=self.dsName0)
# use the reference geometry obj size
# for low-reso ionosphere from isce2/topsStack
if geom_obj:
length, width = geom_obj.get_size()
# update due to subset
if box:
length, width = box[3] - box[1], box[2] - box[0]
# update due to multilook
length = length // ystep
width = width // xstep
return num_ifgram, length, width
def get_date12_list(self):
pairs = [pair for pair in self.pairsDict.keys()]
self.date12List = [f'{i[0]}_{i[1]}' for i in pairs]
return self.date12List
def get_dataset_list(self):
ifgramObj = [x for x in self.pairsDict.values()][0]
dsetList = [x for x in ifgramObj.datasetDict.keys()]
return dsetList
def get_metadata(self):
ifgramObj = [v for v in self.pairsDict.values()][0]
self.metadata = ifgramObj.get_metadata(family=self.dsName0)
if 'UNIT' in self.metadata.keys():
self.metadata.pop('UNIT')
return self.metadata
def get_dataset_data_type(self, dsName):
ifgramObj = [v for v in self.pairsDict.values()][0]
dsFile = ifgramObj.datasetDict[dsName]
metadata = readfile.read_attribute(dsFile)
dataType = DATA_TYPE_DICT[metadata.get('DATA_TYPE', 'float32').lower()]
return dataType
def write2hdf5(self, outputFile='ifgramStack.h5', access_mode='w', box=None, xstep=1, ystep=1, mli_method='nearest',
compression=None, extra_metadata=None, geom_obj=None):
"""Save/write an ifgramStackDict object into an HDF5 file with the structure defined in:
https://mintpy.readthedocs.io/en/latest/api/data_structure/#ifgramstack
Parameters: outputFile - str, Name of the HDF5 file for the InSAR stack
access_mode - str, access mode of output File, e.g. w, r+
box - tuple, subset range in (x0, y0, x1, y1)
x/ystep - int, multilook number in x/y direction
mli_method - str, multilook method, nearest, mean or median
compression - str, HDF5 dataset compression method, None, lzf or gzip
extra_metadata - dict, extra metadata to be added into output file
geom_obj - geometryDict object, size reference to determine the resizing operation.
Returns: outputFile - str, Name of the HDF5 file for the InSAR stack
"""
print('-'*50)
# output directory
output_dir = os.path.dirname(outputFile)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print(f'create directory: {output_dir}')
self.pairs = sorted(pair for pair in self.pairsDict.keys())
self.dsNames = list(self.pairsDict[self.pairs[0]].datasetDict.keys())
self.dsNames = [i for i in IFGRAM_DSET_NAMES if i in self.dsNames]
maxDigit = max(len(i) for i in self.dsNames)
numIfgram, length, width = self.get_size(
box=box,
xstep=xstep,
ystep=ystep)
# check if resize is needed for a lower resolution stack, e.g. ionosphere from isce2/topsStack
resize2shape = None
if geom_obj and os.path.basename(outputFile).startswith('ion'):
# compare the original data size between ionosphere and geometry w/o subset/multilook
ion_size = self.get_size()[1:]
geom_size = geom_obj.get_size()
if ion_size != geom_size:
msg = 'lower resolution ionosphere file detected'
msg += f' --> resize from {ion_size} to {geom_size} via skimage.transform.resize ...'
print(msg)
# matrix shape for the original geometry size w/o subset/multilook
resize2shape = geom_size
# data size of the output HDF5 file w/ resize/subset/multilook
length, width = self.get_size(
box=box,
xstep=xstep,
ystep=ystep,
geom_obj=geom_obj)[1:]
# write HDF5 file
with h5py.File(outputFile, access_mode) as f:
print(f'create HDF5 file {outputFile} with {access_mode} mode')
###############################
# 3D datasets containing unwrapPhase, magnitude, coherence, connectComponent, wrapPhase, etc.
for dsName in self.dsNames:
dsShape = (numIfgram, length, width)
dsDataType = np.float32
dsCompression = compression
if dsName in ['connectComponent']:
dsDataType = np.int16
dsCompression = 'lzf'
mli_method = 'nearest'
print(('create dataset /{d:<{w}} of {t:<25} in size of {s}'
' with compression = {c}').format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape,
c=dsCompression))
ds = f.create_dataset(dsName,
shape=dsShape,
maxshape=(None, dsShape[1], dsShape[2]),
dtype=dsDataType,
chunks=True,
compression=dsCompression)
# set no-data value - printout msg
if dsName.endswith('OffsetVar'):
print(f'set no-data value for {dsName} from 99 to NaN.')
dsFile = self.pairsDict[self.pairs[0]].datasetDict[dsName]
if dsFile.endswith('cov.bip'):
print('convert variance to standard deviation.')
# msg
if xstep * ystep > 1:
print(f'apply {xstep} x {ystep} multilooking/downsampling via {mli_method} ...')
prog_bar = ptime.progressBar(maxValue=numIfgram)
for i, pair in enumerate(self.pairs):
prog_bar.update(i+1, suffix=f'{pair[0]}_{pair[1]}')
# read and/or resize
ifgramObj = self.pairsDict[pair]
data = ifgramObj.read(dsName,
box=box,
xstep=xstep,
ystep=ystep,
mli_method=mli_method,
resize2shape=resize2shape)[0]
# special handling for offset covariance file
if dsName.endswith('OffsetStd'):
# set no-data value to np.nan
data[data == 99.] = np.nan
# convert variance to std. dev.
dsFile = ifgramObj.datasetDict[dsName]
if dsFile.endswith('cov.bip'):
data = np.sqrt(data)
# write
ds[i, :, :] = data
ds.attrs['MODIFICATION_TIME'] = str(time.time())
prog_bar.close()
###############################
# 2D dataset containing reference and secondary dates of all pairs
dsName = 'date'
dsDataType = np.bytes_
dsShape = (numIfgram, 2)
print('create dataset /{d:<{w}} of {t:<25} in size of {s}'.format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape))
data = np.array(self.pairs, dtype=dsDataType)
f.create_dataset(dsName, data=data)
###############################
# 1D dataset containing perpendicular baseline of all pairs
dsName = 'bperp'
dsDataType = np.float32
dsShape = (numIfgram,)
print('create dataset /{d:<{w}} of {t:<25} in size of {s}'.format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape))
# get bperp
data = np.zeros(numIfgram, dtype=dsDataType)
for i in range(numIfgram):
ifgramObj = self.pairsDict[self.pairs[i]]
data[i] = ifgramObj.get_perp_baseline(family=self.dsName0)
# write
f.create_dataset(dsName, data=data)
###############################
# 1D dataset containing bool value of dropping the interferograms or not
dsName = 'dropIfgram'
dsDataType = np.bool_
dsShape = (numIfgram,)
print('create dataset /{d:<{w}} of {t:<25} in size of {s}'.format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape))
data = np.ones(dsShape, dtype=dsDataType)
f.create_dataset(dsName, data=data)
###############################
# Attributes
# read metadata from original data file w/o resize/subset/multilook
meta = self.get_metadata()
if extra_metadata:
meta.update(extra_metadata)
print(f'add extra metadata: {extra_metadata}')
# update metadata due to resize
# for low resolution ionosphere from isce2/topsStack
if resize2shape:
print('update metadata due to resize')
meta = attr.update_attribute4resize(meta, resize2shape)
# update metadata due to subset
if box:
print('update metadata due to subset')
meta = attr.update_attribute4subset(meta, box)
# update metadata due to multilook
if xstep * ystep > 1:
print('update metadata due to multilook')
meta = attr.update_attribute4multilook(meta, ystep, xstep)
# write metadata to HDF5 file at the root level
meta['FILE_TYPE'] = self.name
for key, value in meta.items():
f.attrs[key] = value
print(f'Finished writing to {outputFile}')
return outputFile
########################################################################################
class ifgramDict:
"""
Ifgram object for a single InSAR pair of interferogram. It includes dataset name (family) of:
'unwrapPhase','coherence','connectComponent','wrapPhase','rangeOffset','azimuthOffset', etc.
Example:
from mintpy.objects.insarobj import ifgramDict
datasetDict = {'unwrapPhase' :'$PROJECT_DIR/merged/interferograms/20151220_20160206/filt_fine.unw',
'coherence' :'$PROJECT_DIR/merged/interferograms/20151220_20160206/filt_fine.cor',
'connectComponent':'$PROJECT_DIR/merged/interferograms/20151220_20160206/filt_fine.unw.conncomp',
'wrapPhase' :'$PROJECT_DIR/merged/interferograms/20151220_20160206/filt_fine.int',
'magnitude' :'$PROJECT_DIR/merged/interferograms/20151220_20160206/filt_fine.unw',
...
}
ifgramObj = ifgramDict(datasetDict=datasetDict)
data, atr = ifgramObj.read('unwrapPhase')
"""
def __init__(self, name='ifgram', datasetDict={}, metadata=None):
self.name = name
self.datasetDict = datasetDict
self.platform = None
self.track = None
self.processor = None
# platform, track and processor can get values from metadat if they exist
if metadata is not None:
for key, value in metadata.items():
setattr(self, key, value)
def read(self, family, box=None, xstep=1, ystep=1, mli_method='nearest', resize2shape=None):
"""Read data for the given dataset name.
Parameters: self - ifgramDict object
family - str, dataset name
box - tuple of 4 int, in (x0, y0, x1, y1) with respect to the full resolution
x/ystep - int, number of pixels to skip, with respect to the full resolution
mli_method - str, interpolation method, nearest, mean, median
resize2shape - tuple of 2 int, resize the native matrix to the given shape
Set to None for not resizing
Returns: data - 2D np.ndarray
meta - dict, metadata
"""
self.file = self.datasetDict[family]
box2read = None if resize2shape else box
# 1. read input file
data, meta = readfile.read(self.file,
datasetName=family,
box=box2read,
xstep=1,
ystep=1)
# 2. resize
if resize2shape:
# link: https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.resize
data = resize(data,
output_shape=resize2shape,
order=1,
mode='constant',
anti_aliasing=True,
preserve_range=True)
# 3. subset by box
if box:
data = data[box[1]:box[3],
box[0]:box[2]]
# 4. multilook
if xstep * ystep > 1:
if mli_method == 'nearest':
# multilook - nearest resampling
# output data size
xsize = int(data.shape[1] / xstep)
ysize = int(data.shape[0] / ystep)
# sampling
data = data[int(ystep/2)::ystep,
int(xstep/2)::xstep]
data = data[:ysize, :xsize]
else:
# multilook - mean or median resampling
data = multilook_data(data,
lks_y=ystep,
lks_x=xstep,
method=mli_method)
return data, meta
def get_size(self, family=IFGRAM_DSET_NAMES[0]):
self.file = self.datasetDict[family]
metadata = readfile.read_attribute(self.file)
length = int(metadata['LENGTH'])
width = int(metadata['WIDTH'])
return length, width
def get_perp_baseline(self, family=IFGRAM_DSET_NAMES[0]):
self.file = self.datasetDict[family]
metadata = readfile.read_attribute(self.file)
self.bperp_top = float(metadata['P_BASELINE_TOP_HDR'])
self.bperp_bottom = float(metadata['P_BASELINE_BOTTOM_HDR'])
self.bperp = (self.bperp_top + self.bperp_bottom) / 2.0
return self.bperp
def get_metadata(self, family=IFGRAM_DSET_NAMES[0]):
self.file = self.datasetDict[family]
self.metadata = readfile.read_attribute(self.file)
self.length = int(self.metadata['LENGTH'])
self.width = int(self.metadata['WIDTH'])
if self.track:
self.metadata['TRACK'] = self.track
if self.platform:
self.metadata['PLATFORM'] = self.platform
return self.metadata
########################################################################################
class geometryDict:
"""
Geometry object for Lat, Lon, Height, Incidence, Heading, Bperp, ... from the same platform and track.
Example:
from mintpy.utils import readfile
from mintpy.utils.insarobj import geometryDict
datasetDict = {'height' :'$PROJECT_DIR/merged/geom_reference/hgt.rdr',
'latitude' :'$PROJECT_DIR/merged/geom_reference/lat.rdr',
'longitude' :'$PROJECT_DIR/merged/geom_reference/lon.rdr',
'incidenceAngle':'$PROJECT_DIR/merged/geom_reference/los.rdr',
'heandingAngle' :'$PROJECT_DIR/merged/geom_reference/los.rdr',
'shadowMask' :'$PROJECT_DIR/merged/geom_reference/shadowMask.rdr',
'waterMask' :'$PROJECT_DIR/merged/geom_reference/waterMask.rdr',
'bperp' :bperpDict
...
}
bperpDict = {'20160406':'$PROJECT_DIR/merged/baselines/20160406/bperp',
'20160418':'$PROJECT_DIR/merged/baselines/20160418/bperp',
...
}
metadata = readfile.read_attribute('$PROJECT_DIR/merged/interferograms/20160629_20160723/filt_fine.unw')
geomObj = geometryDict(processor='isce', datasetDict=datasetDict, extraMetadata=metadata)
geomObj.write2hdf5(outputFile='geometryRadar.h5', access_mode='w', box=(200,500,300,600))
"""
def __init__(self, name='geometry', processor=None, datasetDict={}, extraMetadata=None):
self.name = name
self.processor = processor
self.datasetDict = datasetDict
self.extraMetadata = extraMetadata
# get extra metadata from geometry file if possible
self.dsNames = list(self.datasetDict.keys())
if not self.extraMetadata:
dsFile = self.datasetDict[self.dsNames[0]]
metadata = readfile.read_attribute(dsFile)
if all(i in metadata.keys() for i in ['STARTING_RANGE', 'RANGE_PIXEL_SIZE']):
self.extraMetadata = metadata
def read(self, family, box=None, xstep=1, ystep=1):
self.file = self.datasetDict[family]
# relax dataset name constraint for HDF5 file
# to support reading waterMask from waterMask.h5 file with /mask dataset
if self.file.endswith('.h5'):
dsName = None
else:
dsName = family
data, metadata = readfile.read(self.file,
datasetName=dsName,
box=box,
xstep=xstep,
ystep=ystep)
return data, metadata
def get_slant_range_distance(self, box=None, xstep=1, ystep=1):
"""Generate 2D slant range distance if missing from input template file"""
if not self.extraMetadata:
return None
print('prepare slantRangeDistance ...')
if 'Y_FIRST' in self.extraMetadata.keys():
# for dataset in geo-coordinates, use:
# 1) incidenceAngle matrix if available OR
# 2) constant value from SLANT_RANGE_DISTANCE.
ds_name = 'incidenceAngle'
key = 'SLANT_RANGE_DISTANCE'
if ds_name in self.dsNames:
print(f' geocoded input, use incidenceAngle from file: {os.path.basename(self.datasetDict[ds_name])}')
inc_angle = self.read(family=ds_name)[0].astype(np.float32)
atr = readfile.read_attribute(self.file)
if atr.get('PROCESSOR', 'isce') == 'hyp3' and atr.get('UNIT', 'degrees').startswith('rad'):
print(' convert incidence angle from Gamma to MintPy convention.')
inc_angle[inc_angle == 0] = np.nan # convert the no-data-value from 0 to nan
inc_angle = 90. - (inc_angle * 180. / np.pi) # hyp3/gamma to mintpy/isce2 convention
# inc angle -> slant range distance
data = ut.incidence_angle2slant_range_distance(self.extraMetadata, inc_angle)
elif key in self.extraMetadata.keys():
print(f'geocoded input, use constant value from metadata {key}')
length = int(self.extraMetadata['LENGTH'])
width = int(self.extraMetadata['WIDTH'])
range_dist = float(self.extraMetadata[key])
data = np.ones((length, width), dtype=np.float32) * range_dist
else:
return None
else:
# for dataset in radar-coordinates, calculate 2D pixel-wise value from geometry
data = ut.range_distance(self.extraMetadata,
dimension=2,
print_msg=False)
# subset
if box is not None:
data = data[box[1]:box[3],
box[0]:box[2]]
# multilook
if xstep * ystep > 1:
# output size if x/ystep > 1
xsize = int(data.shape[1] / xstep)
ysize = int(data.shape[0] / ystep)
# sampling
data = data[int(ystep/2)::ystep,
int(xstep/2)::xstep]
data = data[:ysize, :xsize]
return data
def get_incidence_angle(self, box=None, xstep=1, ystep=1):
"""Generate 2D slant range distance if missing from input template file"""
if not self.extraMetadata:
return None
if 'Y_FIRST' in self.extraMetadata.keys():
# for dataset in geo-coordinates, use constant value from INCIDENCE_ANGLE.
key = 'INCIDENCE_ANGLE'
print(f'geocoded input, use constant value from metadata {key}')
if key in self.extraMetadata.keys():
length = int(self.extraMetadata['LENGTH'])
width = int(self.extraMetadata['WIDTH'])
inc_angle = float(self.extraMetadata[key])
data = np.ones((length, width), dtype=np.float32) * inc_angle
else:
return None
else:
# read DEM if available for more previse calculation
if 'height' in self.dsNames:
dem = readfile.read(self.datasetDict['height'], datasetName='height')[0]
else:
dem = None
# for dataset in radar-coordinates, calculate 2D pixel-wise value from geometry
data = ut.incidence_angle(self.extraMetadata,
dem=dem,
dimension=2,
print_msg=False)
# subset
if box is not None:
data = data[box[1]:box[3],
box[0]:box[2]]
# multilook
if xstep * ystep > 1:
# output size if x/ystep > 1
xsize = int(data.shape[1] / xstep)
ysize = int(data.shape[0] / ystep)
# sampling
data = data[int(ystep/2)::ystep,
int(xstep/2)::xstep]
data = data[:ysize, :xsize]
return data
def get_size(self, family=None, box=None, xstep=1, ystep=1):
if not family:
family = [i for i in self.datasetDict.keys() if i != 'bperp'][0]
self.file = self.datasetDict[family]
metadata = readfile.read_attribute(self.file)
# update due to subset
if box:
length = box[3] - box[1]
width = box[2] - box[0]
else:
length = int(metadata['LENGTH'])
width = int(metadata['WIDTH'])
# update due to multilook
length = length // ystep
width = width // xstep
return length, width
def get_dataset_list(self):
self.datasetList = list(self.datasetDict.keys())
return self.datasetList
def get_metadata(self, family=None):
if not family:
family = [i for i in self.datasetDict.keys() if i != 'bperp'][0]
self.file = self.datasetDict[family]
self.metadata = readfile.read_attribute(self.file)
self.length = int(self.metadata['LENGTH'])
self.width = int(self.metadata['WIDTH'])
if 'UNIT' in self.metadata.keys():
self.metadata.pop('UNIT')
return self.metadata
def write2hdf5(self, outputFile='geometryRadar.h5', access_mode='w', box=None, xstep=1, ystep=1,
compression='lzf', extra_metadata=None):
"""Save/write to HDF5 file with structure defined in:
https://mintpy.readthedocs.io/en/latest/api/data_structure/#geometry
"""
print('-'*50)
if len(self.datasetDict) == 0:
print('No dataset file path in the object, skip HDF5 file writing.')
return None
# output directory
output_dir = os.path.dirname(outputFile)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print(f'create directory: {output_dir}')
maxDigit = max(len(i) for i in GEOMETRY_DSET_NAMES)
length, width = self.get_size(box=box, xstep=xstep, ystep=ystep)
self.outputFile = outputFile
with h5py.File(self.outputFile, access_mode) as f:
print(f'create HDF5 file {self.outputFile} with {access_mode} mode')
###############################
for dsName in self.dsNames:
# 3D datasets containing bperp
if dsName == 'bperp':
self.dateList = list(self.datasetDict[dsName].keys())
dsDataType = np.float32
self.numDate = len(self.dateList)
dsShape = (self.numDate, length, width)
ds = f.create_dataset(dsName,
shape=dsShape,
maxshape=(None, dsShape[1], dsShape[2]),
dtype=dsDataType,
chunks=True,
compression=compression)
print(('create dataset /{d:<{w}} of {t:<25} in size of {s}'
' with compression = {c}').format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape,
c=str(compression)))
print('read coarse grid baseline files and linear interpolate into full resolution ...')
prog_bar = ptime.progressBar(maxValue=self.numDate)
for i, date_str in enumerate(self.dateList):
prog_bar.update(i+1, suffix=date_str)
# read and resize
fname = self.datasetDict[dsName][date_str]
data = read_isce_bperp_file(fname=fname,
full_shape=self.get_size(),
box=box,
xstep=xstep,
ystep=ystep)
# write
ds[i, :, :] = data
prog_bar.close()
# Write 1D dataset date accompnay the 3D bperp
dsName = 'date'
dsShape = (self.numDate,)
dsDataType = np.bytes_
print(('create dataset /{d:<{w}} of {t:<25}'
' in size of {s}').format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape))
data = np.array(self.dateList, dtype=dsDataType)
ds = f.create_dataset(dsName, data=data)
# 2D datasets containing height, latitude/longitude, range/azimuthCoord, incidenceAngle, shadowMask, etc.
else:
dsDataType = np.float32
if dsName.lower().endswith('mask'):
dsDataType = np.bool_
dsShape = (length, width)
print(('create dataset /{d:<{w}} of {t:<25} in size of {s}'
' with compression = {c}').format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape,
c=str(compression)))
# read
data = self.read(family=dsName, box=box, xstep=xstep, ystep=ystep)[0]
# water body: -1/True for water and 0/False for land
# water mask: 0/False for water and 1/True for land
fname = os.path.basename(self.datasetDict[dsName])
if fname.startswith('waterBody') or fname.endswith('.wbd'):
data = ~data
print(' input file "{}" is water body (True/False for water/land), '
'convert to water mask (False/True for water/land).'.format(fname))
elif dsName == 'waterMask':
# GMTSAR water/land mask: 1 for land, and nan for water / no data
if np.sum(np.isnan(data)) > 0:
print(' convert NaN value for waterMask to zero.')
data[np.isnan(data)] = 0
elif dsName == 'height':
noDataValueDEM = -32768
if np.any(data == noDataValueDEM):
data[data == noDataValueDEM] = np.nan
print(f' convert no-data value for DEM {noDataValueDEM} to NaN.')
elif dsName == 'rangeCoord' and xstep != 1:
print(f' scale value of {dsName:<15} by 1/{xstep} due to multilooking')
data /= xstep
elif dsName == 'azimuthCoord' and ystep != 1:
print(f' scale value of {dsName:<15} by 1/{ystep} due to multilooking')
data /= ystep
elif dsName in ['incidenceAngle', 'azimuthAngle']:
# HyP3 (Gamma) angle of the line-of-sight vector (from ground to SAR platform)
# incidence angle 'theta' is measured from horizontal in radians
# azimuth angle 'phi' is measured from the east with anti-clockwise as positivve in radians
atr = readfile.read_attribute(self.file)
if atr.get('PROCESSOR', 'isce') == 'hyp3' and atr.get('UNIT', 'degrees').startswith('rad'):
if dsName == 'incidenceAngle':
msg = f' convert {dsName:<15} from Gamma (from horizontal in radian) '
msg += ' to MintPy (from vertical in degree) convention.'
print(msg)
data[data == 0] = np.nan # convert no-data-value from 0 to nan
data = 90. - (data * 180. / np.pi) # hyp3/gamma to mintpy/isce2 convention
elif dsName == 'azimuthAngle':
msg = f' convert {dsName:<15} from Gamma (from east in radian) '
msg += ' to MintPy (from north in degree) convention.'
print(msg)
data[data == 0] = np.nan # convert no-data-value from 0 to nan
data = data * 180. / np.pi - 90. # hyp3/gamma to mintpy/isce2 convention
data = ut.wrap(data, wrap_range=[-180, 180]) # rewrap within -180 to 180
# write
data = np.array(data, dtype=dsDataType)
ds = f.create_dataset(dsName,
data=data,
chunks=True,
compression=compression)
###############################
# Generate Dataset if it doesn't exist as a binary file: incidenceAngle, slantRangeDistance
for dsName in [i for i in ['incidenceAngle', 'slantRangeDistance'] if i not in self.dsNames]:
# Calculate data
data = None
if dsName == 'incidenceAngle':
data = self.get_incidence_angle(box=box, xstep=xstep, ystep=ystep)
elif dsName == 'slantRangeDistance':
data = self.get_slant_range_distance(box=box, xstep=xstep, ystep=ystep)
# Write dataset
if data is not None:
dsShape = data.shape
dsDataType = np.float32
print(('create dataset /{d:<{w}} of {t:<25} in size of {s}'
' with compression = {c}').format(d=dsName,
w=maxDigit,
t=str(dsDataType),
s=dsShape,
c=str(compression)))
ds = f.create_dataset(dsName,
data=data,
dtype=dsDataType,
chunks=True,
compression=compression)
###############################
# Attributes
self.get_metadata()
if extra_metadata:
self.metadata.update(extra_metadata)
print(f'add extra metadata: {extra_metadata}')
# update due to subset
self.metadata = attr.update_attribute4subset(self.metadata, box)
# update due to multilook
if xstep * ystep > 1:
self.metadata = attr.update_attribute4multilook(self.metadata, ystep, xstep)
self.metadata['FILE_TYPE'] = self.name
for key, value in self.metadata.items():
f.attrs[key] = value
print(f'Finished writing to {self.outputFile}')
return self.outputFile
########################################################################################
def read_isce_bperp_file(fname, full_shape, box=None, xstep=1, ystep=1):
"""Read ISCE-2 coarse grid perpendicular baseline file, and project it to full size
Parameters: fname - str, bperp file name
full_shape - tuple of 2 int, shape of file in full resolution
box - tuple of 4 int, subset range in (x0, y0, x1, y1) with respect to full resolution
x/ystep - int, number of pixels to pick/multilook for each output pixel
Returns: data - 2D array of float32
Example: fname = '$PROJECT_DIR/merged/baselines/20160418/bperp'
data = self.read_sice_bperp_file(fname, (3600,2200), box=(200,400,1000,1000))
"""
# read original data
data_c = readfile.read(fname)[0]
# resize to full resolution
data_min, data_max = np.nanmin(data_c), np.nanmax(data_c)
if data_max != data_min:
data_c = (data_c - data_min) / (data_max - data_min)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
data = resize(data_c, full_shape, order=1, mode='edge', preserve_range=True)
if data_max != data_min:
data = data * (data_max - data_min) + data_min
# for debug
debug_mode=False
if debug_mode:
import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8,6));
im = ax1.imshow(readfile.read(fname)[0]); fig.colorbar(im, ax=ax1)
im = ax2.imshow(data); fig.colorbar(im, ax=ax2)
plt.show()
# subset
if box is not None:
data = data[box[1]:box[3],
box[0]:box[2]]
# multilook
if xstep * ystep > 1:
# output size if x/ystep > 1
xsize = int(data.shape[1] / xstep)
ysize = int(data.shape[0] / ystep)
# sampling
data = data[int(ystep/2)::ystep,
int(xstep/2)::xstep]
data = data[:ysize, :xsize]
return data
########################################################################################
class platformTrack:
def __init__(self, name='platformTrack'): # , pairDict = None):
self.pairs = None
def getPairs(self, pairDict, platTrack):
pairs = pairDict.keys()
self.pairs = {}
for pair in pairs:
if pairDict[pair].platform_track == platTrack:
self.pairs[pair] = pairDict[pair]
def getSize_geometry(self, dsName):
pairs = self.pairs.keys()
pairs2 = []
width = []
length = []
files = []
for pair in pairs:
self.pairs[pair].get_metadata(dsName)
if self.pairs[pair].length != 0 and self.pairs[pair].file not in files:
files.append(self.pairs[pair].file)
pairs2.append(pair)
width.append(self.pairs[pair].width)
length.append(self.pairs[pair].length)
length = np.median(length)
width = np.median(width)
return pairs2, length, width
def getSize(self):
pairs = self.pairs.keys()
self.numPairs = len(pairs)
width = []
length = []
for pair in pairs:
length.append(self.pairs[pair].length)
width.append(self.pairs[pair].width)
self.length = np.median(length)
self.width = np.median(width)
def getDatasetNames(self):
# extract the name of the datasets which are actually the keys of
# observations, quality and geometry dictionaries.
pairs = [pair for pair in self.pairs.keys()]
# Assuming all pairs of a given platform-track have the same observations
# let's extract the keys of the observations of the first pair.
if self.pairs[pairs[0]].observationsDict is not None:
self.dsetObservationNames = [k for k in self.pairs[pairs[0]].observationsDict.keys()]
else:
self.dsetObservationNames = []
# Assuming all pairs of a given platform-track have the same quality files
# let's extract the keys of the quality dictionary of the first pair.
if self.pairs[pairs[0]].qualityDict is not None:
self.dsetQualityNames = [k for k in self.pairs[pairs[0]].qualityDict.keys()]
else:
self.dsetQualityNames = []
##################
# Despite the observation and quality files, the geometry may not exist
# for all pairs. Therefore we need to look at all pairs and get possible
# dataset names.
self.dsetGeometryNames = []
for pair in pairs:
if self.pairs[pair].geometryDict is not None:
keys = [k for k in self.pairs[pair].geometryDict.keys()]
self.dsetGeometryNames = list(set(self.dsetGeometryNames) | set(keys))