(or Exercise in Monads)
Language reference for the C++ concept FunctionObject
defines it as an object that implements function call operator — operator()
. That's pretty simple, yet impressively powerful concept at the same time.
Function call operator can take arbitrary number of arguments including ellipsis (...
), can return value of any type, and can appear in any context. If defined for a type that models FunctionObject
concept it can be used as an efficient replacement for pointers to functions — as of C++11 generated by widely known lambda expression syntax sugar.
In fact, types that model FunctionObject
concept express quite close relationship to the functional definition of a function. An "ordinary" function in functional language (like Haskell) is identified by its signature that confesses the whole truth about its behaviour. That is, we have a "black box" (an object that encapsulates given function) and a "synopsis" (bound signature). Functions are to be applied, and that holds true in functional world, mostly. Mostly, because, unlike as in C, partial application is allowed and favoured. "Partial" here means passing some of the arguments for the application while leaving "gaps" for the others (cf. std::bind
and use of placeholders
). In the result, we receive a generated function with a state ready to take the non-applied arguments. Partial application is easily achievable with function objects.
Designing for composition is the true key to success. To be able to compose anything we need to know the interfaces, and the simplest model of an interface is a function signature. Having two functions: f
that produces some output of type T
, and g
that takes an argument of the same type T
, we are able to compose them directly, g
after f
. Functions that do not compose directly require additional "processing" that translates the output from the current one to an input acceptable by the next one in the composition chain.
Translation touches types, never the actual values. That means, there may happen that std::vector
will be iterated, std::optional
content will be checked, or std::tuple
will be "exploded" via std::apply
. In the other words: the container for the actual values will be unwrapped, and wrapped again after function application completes. Note that, function is a container too — applied partially stores its arguments and, if applied fully, a result value. Consider application of g
after f
where:
std::vector<T> f(...) { return { {}, {}, {} }; } // f produces three values of type T
U g(T t) { return U{t}; } // g makes U value out of T value
No direct composition for those two functions exists: the result type of f
does not match the argument type of g
. It does not matter here whether they model FunctionObject
concept or not. However, indirect composition (i.e. translation) is possible, and depends on the logic inside the translator. We have to invent that (appropriate) logic ourselves (here, in fact, it is already given, see note at the end of this chapter).
Generally, in our case, the translation can do the following: it applies g
to each one value from the
sequence returned by f
(i.e. unwraps the container). Note that we have just created an implicit state between f
and g
— a layer of an abstraction that produces a "cloud" of (unordered) values using the values pulled from the container and the function f
.
In order to make a transition form the implicit state to the terminal one we have to transfer the values from that glue layer to the output of g
after f
. That's not trivial: g
returns a value of type U
while we have whole cloud of such values. No, we shall not arbitrary select one of them and discard the rest. Information may not be lost. To enforce that, we will wrap the cloud of values into the original container ("ordered" in a sequence), std::vector
.
std::vector<U> h(...) { return g( f(...) ); } // g after f -- pseudo-code
// ^ ^
// |________| translation happens here!
Congratulations, now you know what the Monad is for. Translation layer is created with >>=
(monadic bind) that combines two functions. Wrapping does return
(and lift
which "changes" function signatures to operate in a monadic context). Unwrapping is done through <-
(which sequentially pulls values form a monadic container).
Due to fact we have to strictly follow maths in a Monad world, following steps are executed within the >>=
abstraction:
- pull (
<-
) from the result off
application, and for each one pulled:- apply
g
and wrap back in the original container (here:std::vector
) immediately,
- apply
- wrap the just created cloud of values back into the original container.
Output for g
after f
produced in that way will be of std::vector<std::vector<U>>
type. That's not acceptable, because g
operates on a vector of values returned by f
. The resulting abstraction shall be flattened through join
operation: std::vector<std::vector<U>>
becomes std::vector<U>
(cf. Scala's flatMap
).
In the following example we will compose two function objects f
and g
of types F
and G
respectively — g
after f
. Object of type F
if applied to a value of type T
may fail to produce an output value of the desired type thus its result type is wrapped into std::optional
.
struct F
{
std::optional<T> operator() (T t);
};
struct G
{
T operator() (T t);
};
Unfortunately, direct composition g
after f
is not possible:
error: no match for call to '(G) (std::optional<int>)'
g(f({}));
^
note: no known conversion for argument 1 from 'std::optional<int>' to 'T'
Dedicated layer of abstraction that will do the required argument conversion should solve that issue. We can easily write code like this:
F f;
G g;
auto r1 = f({});
if (r1)
{
auto r2 = g(r1.value());
// do something with r2
}
which does not solve the problem, though. Every subsequent composed function introduces an extra nested if
block with temporary variables. That's the best recipe for maintenance nightmare. Let's redefine the presented composition problem in terms of iteration, application and binding.
Composition of functions is performed in the known direction. Initial input data is passed to the first function in the composition chain, function application is performed, the resulting value becomes "initial" input data for the second function in the chain, and so on. In general, we are iterating over a sequence of items representing functions, and during that iteration we are performing function application, and then we are binding of the results to the subsequent function. To be able to iterate over, we have to choose an appropriate abstraction that enables us to do so.
C++ language defines iterable abstraction by means of SequenceContainer
concept that we would have had a chance to reuse if it had been defined for heterogeneous containers. That is, neither std::vector
nor std::array
models of that concept accepts items of multiple different types at the same time. Actually, std::tuple
is the only true heterogeneous container in C++17. We will wrap std::tuple
into an abstraction that models FunctionObject
:
template<class... Ts>
struct Chain
{
using sequence_type = std::tuple<Ts...>;
template<class... As>
constexpr decltype(auto) operator()(As&&... args)
{
static_assert(std::tuple_size_v<sequence_type> > 0, "Empty chain");
// apply first function in sequence to args, pass the result
// to the next one; repeat until last function which result
// is returned to the user
return T{};
// ^~~ required to make type inference possible
}
constexpr Chain() = default;
constexpr Chain(Ts&&... ts) : sequence{std::forward<Ts>(ts)...} {}
sequence_type sequence;
};
— and use it as follows:
Chain<F, G> chain;
// or Chain<F, G> chain = {F{}, G{}};
const auto result = chain(T{});
Side note. Someone would say: let's force users to derive from a base class with a virtual
member function that will forward the call to the respective function call operator. That's a sign of a bad design! Here is why:
- we would have to define a multitude of such
virtual
member functions — for every used function signature, - we would introduce a strict relationship between the completely unrelated types (here: function objects),
- we would add a layer of indirection that affects runtime (dynamic dispatch),
- we would have to maintain all that tons of code.
The body of the function call operator of Chain
shall do:
- application of a
std::get< i >(sequence)
function object to the passedargs
, - translation of the result value, and application of
std::get< i + 1 >(sequence)
function object to it.
The above two steps shall be performed for every subsequent item in the sequence
. Iteration over that sequence requires an implicit state to be transferred between each iteration step. That state represents the last known result of a function application. The state is a subject of the translation process that will be introduced soon.
Let's consider an application chain for a direct composition. Following example code additionally enables application of a function to an object of std::tuple
type, where the function requires an "exploded" tuple input:
template<class... Ts>
struct Chain
{
using sequence_type = std::tuple<Ts...>;
template<class... As>
constexpr decltype(auto) operator()(As&&... args)
{
static_assert(std::tuple_size_v<sequence_type> > 0, "Empty chain");
return run<0>(std::forward<As>(args)...);
}
// ...
template<std::size_t I, class... As>
constexpr auto run(As&&... args)
{
// all items but last
if constexpr (I < std::tuple_size_v<sequence_type>)
{
// explode a tuple
if constexpr (std::conjunction_v<is_tuple<As...>
, can_apply<decltype(std::get<I>(sequence)), As...>>)
{
return run<I + 1>(std::apply(std::get<I>(sequence)
, std::forward<As>(args)...));
}
// direct application
else
{
return run<I + 1>(std::invoke(std::get<I>(sequence)
, std::forward<As>(args)...));
}
}
// last one item in sequence
else if constexpr (I == std::tuple_size_v<sequence_type>)
{
// just return first one: the implicit state
return std::get<0>(std::forward_as_tuple(std::forward<As>(args)...));
}
else
{
throw std::invalid_argument{"BUG!"};
}
// ...
}
— where can_apply
checks whether std::apply
can be performed, and is_tuple
checks whether given type is an instance of std::tuple
template:
template<class U>
struct is_tuple : std::false_type {};
template<class... Us>
struct is_tuple<std::tuple<Us...>> : std::true_type {};
template<class F, class T, class = std::void_t<>>
struct can_apply : std::false_type {};
template<class F, class T>
struct can_apply<F, T, std::void_t<
decltype(std::apply(std::declval<F>(), std::declval<T>()))
>> : std::true_type {};
We can build the following composition chain:
struct A { std::tuple<T, T> operator() (T t) { return {t+1, t+2}; } };
struct B { std::tuple<T, T> operator() (T t1, T t2) { return {t1 + t2, t2 }; } };
struct C { T operator() (T t1, T t2) { return {t1 + t2 }; } };
// example: c . b . a 1 is (2, 3) -> (5, 3) -> 8
Chain<A, B, C> chain;
chain(T{1});
Note that std::apply
used to "explode" a tuple is not a translation of the implicit state in a monadic sense (bind for Tuple
). It logically performs uncurry
on the subsequent function, followed by application of a tuple through $
.
Here follows an example translation defined for a std::optional<T>
value and a function that takes argument of type T
, and returns some value of type U
:
template<class T, class F>
// requires Callable<F, T>
constexpr auto mbind(std::optional<T>&& v, F&& f)
{
return v ? std::make_optional(f(v.value())) : std::nullopt;
// ^~~ wrap ^~~ unwrap
}
— function object f
is applied to v
only if it holds a value. Since the result type of mbind
must be consistent, the result value of the application is wrapped back into the original container. We can eliminate nested if
checks easily with mbind
:
struct F { std::optional<T> operator() (T t); };
struct G { T operator() (T t); };
F f;
G g;
auto r1 = f({});
auto r2 = mbind(std::move(r1), g);
// ^~~ is of type optional<T> (G is "lifted" into optional)
auto r3 = mbind(std::move(r2), G{});
// ^~~ unwrapped implicitly
mbind
defined for std::optional
works here as >>=
defined for Maybe
monad. There may be multiple "overloaded" mbind
functions (>>=
), each one defined for different container type (a Monad
instance). Note that only a single layer of abstraction is unwrapped in order to fetch the stored value.
Above defined mbind
works for unary functions only. To enable it for functions of arbitrary arity we have to take a closer look at the algorithm itself.
template<class T>
constexpr auto
// ^~~ deduced result type
mbind(std::optional<T>&& v
// ^~~ argument
, F&& f)
// ^~~ function to which argument is going to be applied
{
// .~~ do we have a value under argument?
return v
// .~~ process argument's value if exists
? std::make_optional(
// ^~~ wrap
f(
// ^~~ apply
v.value()
// ^~~ unwrap
)
)
: std::nullopt;
// ^~~ no value under argument, returns value of (deduced) optional<T> type
}
We apply f
only if none of the arguments to be passed to it is nullopt
, otherwise we return nullopt
. Example implementation where the "container" is denoted by R
parameter follows:
template<class R, class F, class... As>
constexpr std::enable_if_t<is_optional<R>::value, R> mbind_all(F&& f, As&&... args)
{
constexpr auto is_set = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) return false;
else if constexpr (is_optional<arg_type>::value) return v.has_value();
else return true;
};
constexpr auto wrap = [](auto&& v)
{
return R{std::forward<std::remove_reference_t<decltype(v)>>(v)};
};
if/* constexpr*/ ((is_set(std::forward<As>(args)) && ...)) // extra parens required
{
constexpr auto unwrap = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) throw std::invalid_argument{"BUG!"};
else if constexpr (is_optional<arg_type>::value) return v.value();
else return v;
};
return wrap(f(unwrap(std::forward<As>(args))...));
}
else
{
return wrap(std::nullopt);
}
}
// where
template<class U> struct is_optional : std::false_type {};
template<class U> struct is_optional<std::optional<U>> : std::true_type {};
— and an example usage is:
using T = int; // for exposition only
using R = std::optional<T>;
mbind_all<R>([](T x, T y, T z){ return x + y + z; }, R{}, 2, 3); // nullopt
mbind_all<R>([](T x, T y, T z){ return x + y + z; }, 1, 2, 3); // 6
mbind_all<R>([](T x, T y, T z){ return x + y + z; }, 1, R{2}, 3); // 6
mbind_all<R>([](T x, T y, T z){ return x + y + z; }, 1, std::nullopt, 3); // does not compile (see note)
(*) It is worth to note that is_set
can be evaluated during compile-time, but its result not always can be (even so std::optional::has_value
is constexpr
). That's the reason for non-constexpr if-else
block that is controlled by the fold expression. This limitation has further implications. Both two branches of the mentioned conditional block are enabled, thus unwrapping code in wrap(f(unwrap(args)...))
is going to be evaluated for nullopt
values too. That's not allowed and leads to:
error: invalid use of void expression
return wrap(f(unwrap(args)...));
~^~~~~~~~~~~~~~~~~
Unfortunately, the following snippet won't compile because we have explicitly fixed the R
type, that does not match the result type of the lambda expression passed:
using R = std::optional<T>; // T is int -- for exposition only
// ^~~~.
mbind_all<R>([](T x, T y, T z){ return std::make_tuple("sum", x + y + z); }, R{1}, T{2}, T{3});
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/*
error: no matching function for call to 'std::optional<int>::optional(std::tuple<const char*, int>)'
constexpr auto wrap = [](auto&& v) { return R(...
*/
In order to overcome that we would have to specify R
as a parametrised type constructor, i.e. a template for which we have to figure out the actual parameters. In our case it would be std::optional<?>
where ?
is going to be computed based on the types of input arguments. Simply "unfixing" the R
type triggers and error that is a consequence of a non-constexpr if
block controlled by is_set
(see (*) for details). Example code:
template<template<class...> class R, class F, class... As>
constexpr auto mbind_all(F&& f, As&&... args)
{
// ...
constexpr auto wrap = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
return R<arg_type>(std::forward<arg_type>(v));
};
// ...
if/* constexpr*/ ((is_set(std::forward<As>(args)) && ...))
{
// ...
return wrap(f(unwrap(std::forward<As>(args))...));
// ^^^^
}
else
{
return wrap(std::nullopt);
// ^^^^
}
— gives:
mbind_all
<
std::optional // a template that constructs fixed types like optional<int>
>([](T x, T y, T z){ return std::make_tuple("sum", x + y + z); }, R{1}, T{2}, T{3});
/*
error: inconsistent deduction for auto return type:
'std::optional<std::tuple<const char*, int> > and then 'std::optional<const std::nullopt_t>'
*/
We have to either disable one of the branches of the mentioned if
block to make the deduction succeed, or calculate the common type, then use its default constructor (e.g. for std::optional
it leads to an object that does not contain a value). Following code snippet implements the mentioned technique:
template<template<class...> class R, class F, class... As>
constexpr auto mbind_all(F&& f, As&&... args)
{
constexpr auto is_set = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) return false;
else if constexpr (is_optional<arg_type>::value) return v.has_value();
else return true;
};
constexpr auto unwrap = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) throw std::invalid_argument{"BUG!"};
else if constexpr (is_optional<arg_type>::value) return v.value();
else return v;
};
constexpr auto wrap = [](auto&& v)
{
using arg_type = std::remove_reference_t<decltype(v)>;
return R<arg_type>{std::forward<arg_type>(v)};
};
using result_type = decltype(wrap(f(unwrap(std::forward<As>(args))...)));
return (is_set(std::forward<As>(args)) && ...)
? wrap(f(unwrap(std::forward<As>(args))...))
: result_type{};
// ^^^^^^^^^^^^^
}
Note that isset
and unwrap
are std::optional
-specific. To make mbind_all
working for an arbitrary R
, the affected actions (wrap
, unwrap
, is_set
) and the value returned upon computation failure are abstracted into mbind_all_impl
tagged with R
:
template<template<class...> class R, class F, class... As>
constexpr auto mbind_all(F&& f, As&&... args)
{
using impl = mbind_all_impl<R>;
using result_type = decltype(impl::wrap(f(impl::unwrap(std::forward<As>(args))...)));
return (impl::is_set(std::forward<As>(args)) && ...)
? impl::wrap(f(impl::unwrap(std::forward<As>(args))...))
: result_type{impl::failure_value};
}
— where:
template<template<class...> class R>
struct mbind_all_impl_base
{
template<class V>
static constexpr auto wrap(V&& v)
{
using arg_type = std::remove_reference_t<V>;
return R<arg_type>{std::forward<arg_type>(v)};
}
};
template<template<class...> class R>
struct mbind_all_impl;
template<>
struct mbind_all_impl<std::optional>
: mbind_all_impl_base<std::optional>
{
template<class V>
static constexpr auto is_set(V&& v)
{
using arg_type = std::remove_reference_t<V>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) return false;
else if constexpr (is_optional<arg_type>::value) return v.has_value();
else return true;
}
template<class V>
static constexpr auto unwrap(V&& v)
{
using arg_type = std::remove_reference_t<V>;
if constexpr (std::is_same_v<arg_type, std::nullopt_t>) throw std::invalid_argument{"BUG!"};
else if constexpr (is_optional<arg_type>::value) return v.value();
else return v;
}
static constexpr auto failure_value = std::nullopt;
};
Example usage:
auto [s, i] =
mbind_all<std::optional>
([](T x, T y, T z){ return std::make_tuple("sum", x + y + z); }, R{1}, T{2}, T{3})
.value();
std::cout << s << ' ' << i << '\n'; // sum 6
mbind_all<std::optional> // ,~~~ makes computation failed
([](T x, T y, T z){ return std::make_tuple("sum", x + y + z); }, R{}, T{2}, T{3})
.value(); // terminate called after throwing an instance of 'std::bad_optional_access'
Note that the container R
has to defined explicitly (or deduced from the passed function object's signature by means of an additional abstraction), thus the regular application happens where un/wrapping is not required. Consider the following composition "chain":
struct F { std::optional<T> operator() (T t); };
struct G { T operator() (T t); };
F f;
G g;
auto r1 = f({}); // F: T -> optional<T>
auto r2 = mbind_all<std::optional>(g, std::move(r1)); // G: T -> T
// ^~~ is of type optional<T> (G is "lifted" into optional)
auto r3 = mbind_all<std::optional>(G{}, std::move(r2));
// ^~~ unwrapped implicitly
Interestingly, we cannot mix the containers of different types in a single mbind_all
composition chain easily. We can "stack" them (like std::vector<std::optional<T>>
), and then move between the created layers of abstraction. That requires additional tooling known as Monad Transformers, and is not covered in this article.
Some effort is required to incorporate the mdind_all
abstraction into the introduced already Chain
abstraction. First step is to parametrise the original abstraction with the R
class template:
template<template<class...> class R, class... Ts>
// ^^^^^^^^^^^^^^^^^^^^^^^^^^
struct Chain
{
...
The second step is to tweak the run
member function's cases for non-terminal iteration steps:
// using impl = mbind_all_impl<R>;
if constexpr (I < std::tuple_size_v<sequence_type>)
{
if constexpr (std::conjunction_v<
std::is_same<decltype(impl::failure_value), std::remove_reference_t<As>>...
>)
{
return impl::failure_value;
}
else if constexpr (std::conjunction_v<
is_tuple<As...>
, can_apply<decltype(std::make_tuple(std::get<I>(sequence))), As...>
>)
{
auto r =
std::apply( do_mbind_all
// ^^^^^^^^^^^^
, std::tuple_cat(std::make_tuple(std::get<I>(sequence)), std::forward<As>(args)...) );
return impl::is_set(r)
? impl::wrap(impl::unwrap(run<I + 1>(impl::unwrap(std::move(r)))))
// ^^^^^^^^^^^^
: impl::failure_value;
}
else
{
auto r = mbind_all<R>(std::get<I>(sequence), std::forward<As>(args)...);
return impl::is_set(r)
? impl::wrap(impl::unwrap(run<I + 1>(impl::unwrap(std::move(r)))))
// ^^^^^^^^^^^^
: impl::failure_value;
}
}
— where do_mbind_all
does the thing described in i.a. P0834R0, it lifts the overload set into an object. Simply passing mbind_all<R>
into std::apply
leads to unresolved overload error. Here is the implementation of the mentioned lift action:
static constexpr auto do_mbind_all =
[](auto&&... as)
{
return mbind_all<R>(std::forward<std::remove_reference_t<decltype(as)>>(as)...);
};
Since mbind_all
implicitly wraps the result value into the R
abstraction, we can end up quickly with overly nested abstractions. That's fixed by an additional unwrapping of the result value returned in the subsequent step.
See live code on Coliru here.
February 23, 2018; March 5, 2018 — Krzysztof Ostrowski