
2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

1 / 6

Important changes introduced with ticket 1269 - Integrate exporter
registration with OpenTelemetry and opentelemetry-opencensus-
shim, ticket 1279 - Upgrade OpenTelemetry to version 1.10.0 and
ticket 1297 - Add exporter services for Jaeger proto and OTLP
(OpenTelemetry Protocol) gRPC and http (tracing and metrics)
Date: 2022-03-16 Author: Heiko Holz

With ticket 1269 , ticket 1279, and [ticket 1297](Add exporter services for Jaeger proto and OTLP (OpenTelemetry Protocol) gRPC and http
(tracing and metrics)), we have integrated previously supported trace and metrics exporter services with the OpenTelemetry framework.

Updated trace and metric exporters
The state of supported trace and metrics exporters have changed as follows:

Trace exporters

Exporter Working

Logging Exporter ✓

Jaeger (Thrift) ✓

Zipkin ✓

Jaeger (GRPC) ✓

OTLP (gRPC) ✓

OTLP (HTTP) ✓

Metric exporters

Exporter Working

Logging Exporter ✓

Prometheus Exporter ✓

InfluxDB Exporter ✓

OTLP (gRPC) ✓

OTLP (HTTP) ✓

Note: The user and password properties of the InfluxDB Exporter are now mandatory, as inspectIT Ocelot uses the
BasicAuthInterceptor.java and Credentials.kt from com.squareup.okhttp3:http:4.9.0, which does not allow null for
username or password.

Tracing
For tracing, the following properties have been added to inspectit.tracing

Property
Default
Value

Description

max-
export-
batch-
size

512
The max export batch size used for every export, see
io.opentelemetry.sdk.trace.export.BatchSpanProcessor#maxExportBatchSize

https://github.com/inspectIT/inspectit-ocelot/issues/1269
https://github.com/inspectIT/inspectit-ocelot/issues/1279
https://github.com/inspectIT/inspectit-ocelot/issues/1297
https://github.com/heiko-holz
https://github.com/inspectIT/inspectit-ocelot/issues/1269
https://github.com/inspectIT/inspectit-ocelot/issues/1279

2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

2 / 6

Property
Default
Value

Description

schedule-
delay-
millis

5000
The delay interval between two consecutive exports in milliseconds, see
io.opentelemetry.sdk.trace.export.BatchSpanProcessor#maxExportBatchSize#scheduleDelayNanos.

(Un-)registering trace and metrics exporter services
Previously implemented trace and metrics exporter services are now re-implemented and tested (with the exception of the
OcAgentTraceExporterService and OcAgentMetricsExporterService, which have been completely removed). For this, the
rocks.inspectit.ocelot.bootstrap.opentelemetry.IOpenTelemetryController interface and the respective
rocks.inspectit.ocelot.core.opentelemetry.OpenTelemetryControllerImpl have been implemented. The
OpenTelmetryControllerImpl is responsible for setting up tracing and metrics with OpenTelemetry and updating custom
implementations of OpenTelemetry interfaces to register and unregister exporter services.

The individual services, i.e., DynamicallyActivatableTraceExporterService and
DynamicallyActivatableMetricsExporterService, register in their doEnable method to the openTelemetryController and
unregister in their doDisable method from the controller.

Custom implementation of OpenTelemetry and SpanExporters

OpenTelemetry does not come with a SpanExporter or SpanProcessor implementation that supports adding new span exporters after
the SdkTracerProvider has been built and registered. To be able to add (register) and remove (unregister) SpanExporter dynamically,
we have implemented the DynamicMultiSpanExporter.

Additionally, to be able to update (set) GlobalOpenTelemetry#globalOpenTelemetry without using
GlobalOpenTelemetry#resetForTesting(), we have implemented our own OpenTelemetryImpl. The OpenTelemetryImpl class is a
wrapper class for the OpenTelemetrySdk that is used to be able to change the underlying OpenTelemetrySdk object in
OpenTelemetryImpl#openTelemetry. The OpenTelemetryImpl can be registered as the
GlobalOpenTelemetry#globalOpenTelemetry via OpenTelemetryImpl#registerGlobal() and the underlying OpenTelemetrySdk
can be changed via OpenTelemetryImpl#set(OpenTelemetrySdk otel).

How OpenTelemetry is configured and updated
When configurations for tracing or metrics exporter services change, they usually unregister and then re-register to the
OpenTelemetryControllerImpl during an InspectitConfigChangedEvent. The OpenTelemetryControllerImpl then re-configures
OpenTelemetry after all exporter services have (un-/re-)registered. For this, the respective event listeners have been annotated with the
@Order annotation, i.e., for DynamicallyActivatableService#checkForUpdates(InspectitConfigChangedEvent ev):

 @EventListener(InspectitConfigChangedEvent.class)
 @Order(Ordered.HIGHEST_PRECEDENCE) // make sure this is called before
OpenTelemetryController#configureOpenTelemetry
 synchronized void checkForUpdates(InspectitConfigChangedEvent ev) {
 ...
 }

and for OpentTelemetryImpl#configureOpenTelemetry(InspectitConfigChangedEvent ev):

 @EventListener(InspectitConfigChangedEvent.class)
 @Order(Ordered.LOWEST_PRECEDENCE)
 // make sure this is called after the individual services have (un)-registered
 synchronized boolean configureOpenTelemetry() {
 ...
 }

(Re-)configuring trace exporter services

2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

3 / 6

Tracing is re-configured in the OpenTelemetryControllerImpl#configureTracing(InspectitConfig configuration) method. Due
to our custom DynamicMultiSpanExporter and DynamicSampler implementation, only the sample probability is updated and no
SdkTracerProvider/SpanProcessor/SpanExporter is (re-)built. Thus, when building a new OpenTelemetrySdk in
OpenTelemetryControllerImpl#configureOpenTelemetry(), we keep using the previously built SdkTracerProvider.

(Re-)configuring metric exporter services

Metrics are re-configured in the OpenTelemetryControllerImpl#configureMeterProvider(InspectitConfiguration
configuration) method. As OpenTelemetry does not give us access to underlying MetricExporter or MetricReader, we have to
rebuild the SdkMeterProvider and register a new MetricReaderFactory for each registered metrics exporter service. After being
rebuilt, the new SdkMeterProvider is then registered to our custom MeterProviderImpl. For this, the previously registered
SdkMeterProvider has to be closed before, which can take up to 10 seconds (e.g., the
io.opentelemetry.exporter.prometheus.PrometheusHttpServer takes 10 seconds to close, see PrometheusHttpServer#close).

An overview of the re-configuration process is given below:

rebuild and register OpenTelemetrySdk

// rebuild OTEL with new SdkMeterProvider and previously used SdkTracerProvider
OpenTelemetrySdk openTelemetrySdk = OpenTelemetrySdk.builder().
....
.setTracerProvider(tracerProvider)
.setMeterProvider(newSdkMeterProvider);

// register in OpenTelmetryImpl
openTelemetry.set(openTelemetrySdk);

user

changes config

inform MetricsExporterService

inform TraceExporterService

ConfigChanged

yes: (un-)register the MetricExporterService
and build new SdkMeterProvider

OpenTelemetryControllerImpl#registerMetricsExporterService
OpenTelemetryControllerImpl#registerMetricsExporterService

-->
OpenTelemetryControllerImpl#configureMeterProvider

// register MetricReaderFactory for each service
SdkMeterProvider.builder()
.registerMetricReader(readerOne)
.registerMetricReader(readerTwo)
....
.build();

configuration of a
MetricExporterService

changed

Tracer and metric
exporter services

updated

update SdkMeterProvider
and stop previously registered SdkMeterProvider

SdkMeterProvider newSdkMeterProvider = SdkMeterProvider.builder().....build();
-->
// stop previously registered SdkMeterProvider
OpenTelemetryUtils.stopMeterProvider(previouslyRegisteredMeterProvider)

// update SdkMeterProvider
return newSdkMeterProvider;

new
SdkMeterProvider

built

if the configuration of a metric
exporter service changed, we

have to rebuild the
SdkMeterProvider and stop the

previously registered
SdkMeterProvider

configuration of a
TraceExporterService

changed

no: tracing and/or metrics are not re-configured

yes: (un-)register the TraceExporterService

OpenTelemetryControllerImpl#unregisterTraceExporterService
OpenTelemetryControllerImpl#registerTraceExporterService
-->
DynamicMultiSpanExporter#registerSpanExporter
DynamicMultiSpanExporter#unregisterSpanExporter

DynamicMultiSpanExporter
and DynamicSampler

updated

OpenTelemetryControllerImpl
successfully re-configured

OpenTelemetry

if the configuration of a trace
exporter service changed, we can

simply update the underlying
SpanExporter and (un-)register it

to the
OpenTelemetryControllerImpl

OpenTelemetrySdk
rebuilt and
registered

Flowchart on how OpenTelemetry is re-configured in inspectIT Ocelot

The hierarchy of SdkMeterProvider and OpenTelemetrySdk that led us to the above architecture decisions are given below:

2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

4 / 6

OpenTelemetrySdk

setTracerProvider(tracerProvider);
setMeterProvider(meterProvider)
private final SdkTracerProvider tracerProvider;
private final SdkMeterProvider meterProvider

SdkTracerProvider

private final TracerSharedState sharedState

SdkMeterProvider

private final MeterProviderSharedState sharedStat

private final Map<CollectionHandle, CollectionInfo>

GlobalOpenTelemetry

OpenTelemetry get();
TracerProvider getTracerProvider();
MeterProvider getMeterProvider();

 Overview of OpenTelemetrySdk architecture
(OpenTelemetrySdk)

2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

5 / 6

SdkTracerProvider

private final TracerSharedState sharedState

TracerSharedState

private final Sampler sampler
private final SpanProcessor activeSpanProces

MultiSpanProcessor

private final List<SpanProcessor> spanProcessors

TraceIdRatioBasedSampler

private final long idUpperBound;
private final String description;

The OpenTelemetrySdk contains the SdkTracerProvider

The SdkTracerProvider contains the TracerSharedState

The TracerSharedState contains the Sampler and the SpanProcessor

The SpanProcessor is potentially a list of SpanProcessors. The
SpanProcessors contain either a reference to the SpanExporter (for
SimpleSpanExporter) or a reference to a Worker that contains the

SpanExporter

The Sampler is potentially (for our implementation) a
TraceIdRatioBasedSampler

SimpleSpanProcessor

private final SpanExporter spanExporter

BatchSpanProcessor

private final Worker worker;

Worker

private final SpanExporter spanExporter;

SpanExporter

What do we want to configure for
Span/TraceExporterService on
demand?

SdkTracerProvider:
- serviceName

Sampler
- sampleProbability

BatchSpanProcessor:
- maxExportBatchSize
- scheduleDelayMillis

MultiSpanExporter

private final SpanExporter[] spanExporters:

Trace Exporter Services:

- Logging
- JaegerThrift
- JaegerGrpc
- Zipkin
- OTLP

TraceIdRatioBasedSampler

private final long idUpperBound;
private final String description;

TracerSharedState

private final Sampler sampler
private final SpanProcessor activeSpanProcessor

Overview of OpenTelemetry tracing architecture (SdkTracerProvider)

2022-01-11-ticket-1269-1279-otel-exporters-otel-upgrade-changenotes.md 4/5/2022

6 / 6

SdkMeterProvider

private final MeterProviderSharedState sharedStat

private final Map<CollectionHandle, CollectionInfo>

AutoValue_MeterProviderSharedState AutoValue_CollectionInfo

private final MetricReader reader;

PeriodicMetricReader

private final MetricExporter exporter;

private final ScheduledFuture scheduledFuture;

The PeriodicMetricReader
starts the ScheduledFuture

with the interval

What do we want to configure
for MetricsExporterService on
demand?

SdkMeterProvider:
- serviceName

Exporter:
- exportInterval (in
PeriodicMetricReader)

MetricExporter

problem with shutdown:
The PrometheusHttpServer has a

delay of 10 seconds in its
server.stop(10);

Thus, shutting down the previous
SdkMeterProvider results in a delay of

10 seconds before a new
PrometheusHttpServer can be started

again!

problem with Prometheus:
we do not get a handle on the
PrometheusHttpServer (which

implements the MetricReader), only to
PrometheusHttpServerBuilder and the

MetricReaderFactory.

Metric Exporter Services:

- Prometheus
- Logging
- OTLP
- Influx

Overview of OpenTelemetry metrics architeture (SdkMetricsProvider)

Things that have been removed or do not work anymore
The service-name property of the trace and metrics exporter services (JaegerExporterServiceSettings,
ZipkinExporterSettings, LoggingTraceExporterSettings, and LoggingMetricsExporterSettings) has been removed, as it
is not supported by OpenTelemetry

OpenTelemetry supports a global serviceNameResource
(Resource.create(Attributes.of(ResourceAttributes.SERVICE_NAME, "your-service-name")))
OpenTelemetry does not support individual service names for different exporters
→ Please use the global inspectit.service-name property instead

