In this directory, you will find examples on how to run StableDiffusion models on Intel GPUs.
Follow the instructions in IPEX-GPU installation guides (Linux Guide, Windows Guide) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance.
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
conda activate diffusion
pip install diffusers["torch"]==0.31.0 transformers
pip install -U PEFT transformers
Note
Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
source /opt/intel/oneapi/setvars.sh
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1
Note
For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
The example shows how to run Openjourney example on Intel GPU.
python ./openjourney.py
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the Openjourney model (e.g.prompthero/openjourney
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'prompthero/openjourney'
.--prompt PROMPT
: argument defining the prompt to be infered. It is default to be'An astronaut in the forest, detailed, 8k'
.--save-path
: argument defining the path to save the generated figure. It is default to beopenjourney-gpu.png
.--num-steps
: argument defining the number of inference steps. It is default to be20
.
The example shows how to run StableDiffusion XL example on Intel GPU.
python ./sdxl.py
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the stable diffusion xl model (e.g.stabilityai/stable-diffusion-xl-base-1.0
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'stabilityai/stable-diffusion-xl-base-1.0'
.--prompt PROMPT
: argument defining the prompt to be infered. It is default to be'An astronaut in the forest, detailed, 8k'
.--save-path
: argument defining the path to save the generated figure. It is default to besdxl-gpu.png
.--num-steps
: argument defining the number of inference steps. It is default to be20
.
The sample output image looks like below.
The example shows how to performing inference with LCM-LoRA on Intel GPU.
python ./lora-lcm.py
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the stable diffusion xl model (e.g.stabilityai/stable-diffusion-xl-base-1.0
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'stabilityai/stable-diffusion-xl-base-1.0'
.--lora-weights-path
: argument defining the huggingface repo id for the LCM-LoRA model (e.g.latent-consistency/lcm-lora-sdxl
) to be downloaded, or the path to huggingface checkpoint folder. It is default to be'latent-consistency/lcm-lora-sdxl'
.--prompt PROMPT
: argument defining the prompt to be infered. It is default to be'A lovely dog on the table, detailed, 8k'
.--save-path
: argument defining the path to save the generated figure. It is default to belcm-lora-sdxl-gpu.png
.--num-steps
: argument defining the number of inference steps. It is default to be4
.