-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
generate.py
86 lines (74 loc) · 3.16 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import requests
import time
import torch
from PIL import Image
from transformers import LlavaForConditionalGeneration, AutoProcessor
from ipex_llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for LLaVA model')
parser.add_argument('--repo-id-or-model-path', type=str, default="llava-hf/llava-1.5-7b-hf",
help='The huggingface repo id for the LLaVA model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="Describe image in detail",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
prompt = args.prompt
model = LlavaForConditionalGeneration.from_pretrained(model_path)
model = optimize_model(model, low_bit='sym_int4').eval()
model = model.half().to("xpu")
processor = AutoProcessor.from_pretrained(model_path)
# here the prompt tuning refers to https://huggingface.co/llava-hf/llava-1.5-7b-hf#using-pure-transformers
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)
inputs = processor(text=text, images=image, return_tensors="pt").to('xpu')
with torch.inference_mode():
# warmup
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
# start inference
st = time.time()
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
et = time.time()
output_str = processor.decode(output[0])
print(f'Inference time: {et-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)