Follow these instructions to set up and run our provided Docker image.
You'll need to install Docker Engine on your development system. Note that while Docker Engine is free to use, Docker Desktop may require you to purchase a license. See the Docker Engine Server installation instructions for details.
To build and run this workload inside a Docker Container, ensure you have Docker Compose installed on your machine. If you don't have this tool installed, consult the official Docker Compose installation documentation.
DOCKER_CONFIG=${DOCKER_CONFIG:-$HOME/.docker}
mkdir -p $DOCKER_CONFIG/cli-plugins
curl -SL https://github.com/docker/compose/releases/download/v2.24.5/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose
chmod +x $DOCKER_CONFIG/cli-plugins/docker-compose
docker compose version
Build or Pull the provided docker images.
cd docker
docker compose build
OR
docker pull intel/intel-extension-for-transformers:1.4.0
docker pull intel/intel-extension-for-transformers:devel-1.4.0
Utilize the TLT CLI without installation by using the provided docker image and docker compose.
docker compose run devel
docker compose run devel python setup.py sdist
docker compose run devel python tests/<test_mytest>.py
- Install Helm
curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 && \
chmod 700 get_helm.sh && \
./get_helm.sh
Install the standalone operator from GitHub/Artifacthub or use a pre-existing Kubeflow configuration.
kubectl apply -k "github.com/kubeflow/training-operator/manifests/overlays/standalone"
OR
helm repo add cowboysysop https://cowboysysop.github.io/charts/
helm install <release name> cowboysysop/training-operator
For more customization information, see the chart README
export NAMESPACE=kubeflow
helm install --namespace ${NAMESPACE} --set ... itrex-distributed ./chart
To view your workflow progress
kubectl get -o yaml pytorchjob itrex-distributed -n ${NAMESPACE}