This repository has been archived by the owner on Mar 20, 2024. It is now read-only.
forked from parallella/pal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
p_firsym.c
127 lines (108 loc) · 4.03 KB
/
p_firsym.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include <pal.h>
/**
*
* Computes a FIR filter (direct-form) with symmetric coefficients 'h'.
* The filter is assumed to have odd length and symmetric impulse response (type I).
* The real input data is stored in vector x. The filter output result is stored
* in the vector r.
* @param x Pointer to input vector of 'nx' elements
*
* @param h Pointer to the distinct coefficients of the filter
*
* @param r Pointer to result vector
*
* @param nx The number of input (and output) samples
*
* @param nh The number of distinct coefficients of the filter (length of h)
*
* @return None
*
*/
void p_firsym_f32(const float *x, const float *h, float *r, int nx, int nh)
{
int wrp; /* Delay line block pointer */
int dlp; /* Delay line individual tap position */
int rdp; /* I/O data pointer */
int cp; /* FIR coefficient index */
int ndl; /* Length of delay line */
float *dl;
float fir[8];
/* The length of the delay line is (next multiple of 8 of nh) + 8. */
if ((2*nh-1) & 7) {
ndl = (2*nh-1) & ~0x7;
ndl += 16;
} else {
ndl = (2*nh - 1) + 8;
}
/* Delay line is twice the necessary size to avoid moving data around. */
/* [TODO] Use p_malloc (not implemented yet) */
dl = malloc(2*ndl*sizeof(float));
/* Reset delay line */
for (wrp = 0; wrp < 2*ndl; wrp++) {
dl[wrp] = 0.0;
}
/* Start convolution */
wrp = ndl;
for (rdp = 0; rdp < nx-7; rdp += 8) {
/* Update delay line */
dl[wrp+0] = dl[wrp-ndl+0] = x[rdp+0];
dl[wrp+1] = dl[wrp-ndl+1] = x[rdp+1];
dl[wrp+2] = dl[wrp-ndl+2] = x[rdp+2];
dl[wrp+3] = dl[wrp-ndl+3] = x[rdp+3];
dl[wrp+4] = dl[wrp-ndl+4] = x[rdp+4];
dl[wrp+5] = dl[wrp-ndl+5] = x[rdp+5];
dl[wrp+6] = dl[wrp-ndl+6] = x[rdp+6];
dl[wrp+7] = dl[wrp-ndl+7] = x[rdp+7];
fir[0] = fir[1] = fir[2] = fir[3] = 0.0;
fir[4] = fir[5] = fir[6] = fir[7] = 0.0;
/* Filter samples using temporary local array */
for (cp = 0, dlp = wrp-2*nh+2; cp < nh-1; cp++, dlp++) {
fir[0] += h[cp] * (dl[dlp+0] + dl[dlp + 2*(nh-1-cp) + 0]);
fir[1] += h[cp] * (dl[dlp+1] + dl[dlp + 2*(nh-1-cp) + 1]);
fir[2] += h[cp] * (dl[dlp+2] + dl[dlp + 2*(nh-1-cp) + 2]);
fir[3] += h[cp] * (dl[dlp+3] + dl[dlp + 2*(nh-1-cp) + 3]);
fir[4] += h[cp] * (dl[dlp+4] + dl[dlp + 2*(nh-1-cp) + 4]);
fir[5] += h[cp] * (dl[dlp+5] + dl[dlp + 2*(nh-1-cp) + 5]);
fir[6] += h[cp] * (dl[dlp+6] + dl[dlp + 2*(nh-1-cp) + 6]);
fir[7] += h[cp] * (dl[dlp+7] + dl[dlp + 2*(nh-1-cp) + 7]);
}
/* Evaluate middle tap */
fir[0] += h[nh-1] * dl[dlp+0];
fir[1] += h[nh-1] * dl[dlp+1];
fir[2] += h[nh-1] * dl[dlp+2];
fir[3] += h[nh-1] * dl[dlp+3];
fir[4] += h[nh-1] * dl[dlp+4];
fir[5] += h[nh-1] * dl[dlp+5];
fir[6] += h[nh-1] * dl[dlp+6];
fir[7] += h[nh-1] * dl[dlp+7];
/* Update output array */
r[rdp+0] = fir[0];
r[rdp+1] = fir[1];
r[rdp+2] = fir[2];
r[rdp+3] = fir[3];
r[rdp+4] = fir[4];
r[rdp+5] = fir[5];
r[rdp+6] = fir[6];
r[rdp+7] = fir[7];
/* Increment delay line block and wrap around, if necessary. */
wrp += 8;
if (wrp == 2*ndl)
wrp = ndl;
}
/* If the length of x is not a multiple of 8, there are still N < 8 samples
to process. The following therefore remains within one delay line block
and no wrapping is possible. */
for ( ; rdp < nx; rdp++, wrp++) {
/* Update delay line */
dl[wrp] = x[rdp];
fir[0] = 0.0;
/* Filter samples using temporary local array */
for (cp = 0, dlp = wrp-2*nh+2; cp < nh-1; cp++, dlp++)
fir[0] += h[cp] * (dl[dlp] + dl[dlp + 2*(nh-1-cp)] );
/* Evaluate middle tap */
fir[0] += h[nh-1] * dl[dlp];
/* Update output array */
r[rdp] = fir[0];
}
free(dl);
}