generated from ipfs/ipfs-repository-template
-
Notifications
You must be signed in to change notification settings - Fork 100
/
engine.go
939 lines (801 loc) · 27.7 KB
/
engine.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
// Package decision implements the decision engine for the bitswap service.
package decision
import (
"context"
"fmt"
"math/bits"
"sync"
"time"
"github.com/google/uuid"
"github.com/ipfs/go-cid"
bstore "github.com/ipfs/go-ipfs-blockstore"
wl "github.com/ipfs/go-libipfs/bitswap/client/wantlist"
"github.com/ipfs/go-libipfs/bitswap/internal/defaults"
bsmsg "github.com/ipfs/go-libipfs/bitswap/message"
pb "github.com/ipfs/go-libipfs/bitswap/message/pb"
bmetrics "github.com/ipfs/go-libipfs/bitswap/metrics"
blocks "github.com/ipfs/go-libipfs/blocks"
logging "github.com/ipfs/go-log"
"github.com/ipfs/go-metrics-interface"
"github.com/ipfs/go-peertaskqueue"
"github.com/ipfs/go-peertaskqueue/peertask"
"github.com/ipfs/go-peertaskqueue/peertracker"
process "github.com/jbenet/goprocess"
"github.com/libp2p/go-libp2p/core/peer"
)
// TODO consider taking responsibility for other types of requests. For
// example, there could be a |cancelQueue| for all of the cancellation
// messages that need to go out. There could also be a |wantlistQueue| for
// the local peer's wantlists. Alternatively, these could all be bundled
// into a single, intelligent global queue that efficiently
// batches/combines and takes all of these into consideration.
//
// Right now, messages go onto the network for four reasons:
// 1. an initial `sendwantlist` message to a provider of the first key in a
// request
// 2. a periodic full sweep of `sendwantlist` messages to all providers
// 3. upon receipt of blocks, a `cancel` message to all peers
// 4. draining the priority queue of `blockrequests` from peers
//
// Presently, only `blockrequests` are handled by the decision engine.
// However, there is an opportunity to give it more responsibility! If the
// decision engine is given responsibility for all of the others, it can
// intelligently decide how to combine requests efficiently.
//
// Some examples of what would be possible:
//
// * when sending out the wantlists, include `cancel` requests
// * when handling `blockrequests`, include `sendwantlist` and `cancel` as
// appropriate
// * when handling `cancel`, if we recently received a wanted block from a
// peer, include a partial wantlist that contains a few other high priority
// blocks
//
// In a sense, if we treat the decision engine as a black box, it could do
// whatever it sees fit to produce desired outcomes (get wanted keys
// quickly, maintain good relationships with peers, etc).
var log = logging.Logger("engine")
const (
// outboxChanBuffer must be 0 to prevent stale messages from being sent
outboxChanBuffer = 0
// targetMessageSize is the ideal size of the batched payload. We try to
// pop this much data off the request queue, but it may be a little more
// or less depending on what's in the queue.
defaultTargetMessageSize = 16 * 1024
// tagFormat is the tag given to peers associated an engine
tagFormat = "bs-engine-%s-%s"
// queuedTagWeight is the default weight for peers that have work queued
// on their behalf.
queuedTagWeight = 10
// maxBlockSizeReplaceHasWithBlock is the maximum size of the block in
// bytes up to which we will replace a want-have with a want-block
maxBlockSizeReplaceHasWithBlock = 1024
)
// Envelope contains a message for a Peer.
type Envelope struct {
// Peer is the intended recipient.
Peer peer.ID
// Message is the payload.
Message bsmsg.BitSwapMessage
// A callback to notify the decision queue that the task is complete
Sent func()
}
// PeerTagger covers the methods on the connection manager used by the decision
// engine to tag peers
type PeerTagger interface {
TagPeer(peer.ID, string, int)
UntagPeer(p peer.ID, tag string)
}
// Assigns a specific score to a peer
type ScorePeerFunc func(peer.ID, int)
// ScoreLedger is an external ledger dealing with peer scores.
type ScoreLedger interface {
// Returns aggregated data communication with a given peer.
GetReceipt(p peer.ID) *Receipt
// Increments the sent counter for the given peer.
AddToSentBytes(p peer.ID, n int)
// Increments the received counter for the given peer.
AddToReceivedBytes(p peer.ID, n int)
// PeerConnected should be called when a new peer connects,
// meaning the ledger should open accounting.
PeerConnected(p peer.ID)
// PeerDisconnected should be called when a peer disconnects to
// clean up the accounting.
PeerDisconnected(p peer.ID)
// Starts the ledger sampling process.
Start(scorePeer ScorePeerFunc)
// Stops the sampling process.
Stop()
}
// Engine manages sending requested blocks to peers.
type Engine struct {
// peerRequestQueue is a priority queue of requests received from peers.
// Requests are popped from the queue, packaged up, and placed in the
// outbox.
peerRequestQueue *peertaskqueue.PeerTaskQueue
// FIXME it's a bit odd for the client and the worker to both share memory
// (both modify the peerRequestQueue) and also to communicate over the
// workSignal channel. consider sending requests over the channel and
// allowing the worker to have exclusive access to the peerRequestQueue. In
// that case, no lock would be required.
workSignal chan struct{}
// outbox contains outgoing messages to peers. This is owned by the
// taskWorker goroutine
outbox chan (<-chan *Envelope)
bsm *blockstoreManager
peerTagger PeerTagger
tagQueued, tagUseful string
lock sync.RWMutex // protects the fields immediately below
// peerLedger saves which peers are waiting for a Cid
peerLedger *peerLedger
// an external ledger dealing with peer scores
scoreLedger ScoreLedger
ticker *time.Ticker
taskWorkerLock sync.Mutex
taskWorkerCount int
targetMessageSize int
// maxBlockSizeReplaceHasWithBlock is the maximum size of the block in
// bytes up to which we will replace a want-have with a want-block
maxBlockSizeReplaceHasWithBlock int
sendDontHaves bool
self peer.ID
// metrics gauge for total pending tasks across all workers
pendingGauge metrics.Gauge
// metrics gauge for total pending tasks across all workers
activeGauge metrics.Gauge
// used to ensure metrics are reported each fixed number of operation
metricsLock sync.Mutex
metricUpdateCounter int
taskComparator TaskComparator
peerBlockRequestFilter PeerBlockRequestFilter
bstoreWorkerCount int
maxOutstandingBytesPerPeer int
maxQueuedWantlistEntriesPerPeer uint
}
// TaskInfo represents the details of a request from a peer.
type TaskInfo struct {
Peer peer.ID
// The CID of the block
Cid cid.Cid
// Tasks can be want-have or want-block
IsWantBlock bool
// Whether to immediately send a response if the block is not found
SendDontHave bool
// The size of the block corresponding to the task
BlockSize int
// Whether the block was found
HaveBlock bool
}
// TaskComparator is used for task prioritization.
// It should return true if task 'ta' has higher priority than task 'tb'
type TaskComparator func(ta, tb *TaskInfo) bool
// PeerBlockRequestFilter is used to accept / deny requests for a CID coming from a PeerID
// It should return true if the request should be fullfilled.
type PeerBlockRequestFilter func(p peer.ID, c cid.Cid) bool
type Option func(*Engine)
func WithTaskComparator(comparator TaskComparator) Option {
return func(e *Engine) {
e.taskComparator = comparator
}
}
func WithPeerBlockRequestFilter(pbrf PeerBlockRequestFilter) Option {
return func(e *Engine) {
e.peerBlockRequestFilter = pbrf
}
}
func WithTargetMessageSize(size int) Option {
return func(e *Engine) {
e.targetMessageSize = size
}
}
func WithScoreLedger(scoreledger ScoreLedger) Option {
return func(e *Engine) {
e.scoreLedger = scoreledger
}
}
// WithBlockstoreWorkerCount sets the number of worker threads used for
// blockstore operations in the decision engine
func WithBlockstoreWorkerCount(count int) Option {
if count <= 0 {
panic(fmt.Sprintf("Engine blockstore worker count is %d but must be > 0", count))
}
return func(e *Engine) {
e.bstoreWorkerCount = count
}
}
// WithTaskWorkerCount sets the number of worker threads used inside the engine
func WithTaskWorkerCount(count int) Option {
if count <= 0 {
panic(fmt.Sprintf("Engine task worker count is %d but must be > 0", count))
}
return func(e *Engine) {
e.taskWorkerCount = count
}
}
// WithMaxOutstandingBytesPerPeer describes approximately how much work we are will to have outstanding to a peer at any
// given time. Setting it to 0 will disable any limiting.
func WithMaxOutstandingBytesPerPeer(count int) Option {
if count < 0 {
panic(fmt.Sprintf("max outstanding bytes per peer is %d but must be >= 0", count))
}
return func(e *Engine) {
e.maxOutstandingBytesPerPeer = count
}
}
// WithMaxQueuedWantlistEntriesPerPeer limits how much individual entries each peer is allowed to send.
// If a peer send us more than this we will truncate newest entries.
// It defaults to DefaultMaxQueuedWantlistEntiresPerPeer.
func WithMaxQueuedWantlistEntriesPerPeer(count uint) Option {
return func(e *Engine) {
e.maxQueuedWantlistEntriesPerPeer = count
}
}
func WithSetSendDontHave(send bool) Option {
return func(e *Engine) {
e.sendDontHaves = send
}
}
// wrapTaskComparator wraps a TaskComparator so it can be used as a QueueTaskComparator
func wrapTaskComparator(tc TaskComparator) peertask.QueueTaskComparator {
return func(a, b *peertask.QueueTask) bool {
taskDataA := a.Task.Data.(*taskData)
taskInfoA := &TaskInfo{
Peer: a.Target,
Cid: a.Task.Topic.(cid.Cid),
IsWantBlock: taskDataA.IsWantBlock,
SendDontHave: taskDataA.SendDontHave,
BlockSize: taskDataA.BlockSize,
HaveBlock: taskDataA.HaveBlock,
}
taskDataB := b.Task.Data.(*taskData)
taskInfoB := &TaskInfo{
Peer: b.Target,
Cid: b.Task.Topic.(cid.Cid),
IsWantBlock: taskDataB.IsWantBlock,
SendDontHave: taskDataB.SendDontHave,
BlockSize: taskDataB.BlockSize,
HaveBlock: taskDataB.HaveBlock,
}
return tc(taskInfoA, taskInfoB)
}
}
// NewEngine creates a new block sending engine for the given block store.
// maxOutstandingBytesPerPeer hints to the peer task queue not to give a peer more tasks if it has some maximum
// work already outstanding.
func NewEngine(
ctx context.Context,
bs bstore.Blockstore,
peerTagger PeerTagger,
self peer.ID,
opts ...Option,
) *Engine {
return newEngine(
ctx,
bs,
peerTagger,
self,
maxBlockSizeReplaceHasWithBlock,
opts...,
)
}
func newEngine(
ctx context.Context,
bs bstore.Blockstore,
peerTagger PeerTagger,
self peer.ID,
maxReplaceSize int,
opts ...Option,
) *Engine {
e := &Engine{
scoreLedger: NewDefaultScoreLedger(),
bstoreWorkerCount: defaults.BitswapEngineBlockstoreWorkerCount,
maxOutstandingBytesPerPeer: defaults.BitswapMaxOutstandingBytesPerPeer,
peerTagger: peerTagger,
outbox: make(chan (<-chan *Envelope), outboxChanBuffer),
workSignal: make(chan struct{}, 1),
ticker: time.NewTicker(time.Millisecond * 100),
maxBlockSizeReplaceHasWithBlock: maxReplaceSize,
taskWorkerCount: defaults.BitswapEngineTaskWorkerCount,
sendDontHaves: true,
self: self,
peerLedger: newPeerLedger(),
pendingGauge: bmetrics.PendingEngineGauge(ctx),
activeGauge: bmetrics.ActiveEngineGauge(ctx),
targetMessageSize: defaultTargetMessageSize,
tagQueued: fmt.Sprintf(tagFormat, "queued", uuid.New().String()),
tagUseful: fmt.Sprintf(tagFormat, "useful", uuid.New().String()),
maxQueuedWantlistEntriesPerPeer: defaults.MaxQueuedWantlistEntiresPerPeer,
}
for _, opt := range opts {
opt(e)
}
e.bsm = newBlockstoreManager(bs, e.bstoreWorkerCount, bmetrics.PendingBlocksGauge(ctx), bmetrics.ActiveBlocksGauge(ctx))
// default peer task queue options
peerTaskQueueOpts := []peertaskqueue.Option{
peertaskqueue.OnPeerAddedHook(e.onPeerAdded),
peertaskqueue.OnPeerRemovedHook(e.onPeerRemoved),
peertaskqueue.TaskMerger(newTaskMerger()),
peertaskqueue.IgnoreFreezing(true),
peertaskqueue.MaxOutstandingWorkPerPeer(e.maxOutstandingBytesPerPeer),
}
if e.taskComparator != nil {
queueTaskComparator := wrapTaskComparator(e.taskComparator)
peerTaskQueueOpts = append(peerTaskQueueOpts, peertaskqueue.PeerComparator(peertracker.TaskPriorityPeerComparator(queueTaskComparator)))
peerTaskQueueOpts = append(peerTaskQueueOpts, peertaskqueue.TaskComparator(queueTaskComparator))
}
e.peerRequestQueue = peertaskqueue.New(peerTaskQueueOpts...)
return e
}
func (e *Engine) updateMetrics() {
e.metricsLock.Lock()
c := e.metricUpdateCounter
e.metricUpdateCounter++
e.metricsLock.Unlock()
if c%100 == 0 {
stats := e.peerRequestQueue.Stats()
e.activeGauge.Set(float64(stats.NumActive))
e.pendingGauge.Set(float64(stats.NumPending))
}
}
// SetSendDontHaves indicates what to do when the engine receives a want-block
// for a block that is not in the blockstore. Either
// - Send a DONT_HAVE message
// - Simply don't respond
// Older versions of Bitswap did not respond, so this allows us to simulate
// those older versions for testing.
func (e *Engine) SetSendDontHaves(send bool) {
e.sendDontHaves = send
}
// Starts the score ledger. Before start the function checks and,
// if it is unset, initializes the scoreLedger with the default
// implementation.
func (e *Engine) startScoreLedger(px process.Process) {
e.scoreLedger.Start(func(p peer.ID, score int) {
if score == 0 {
e.peerTagger.UntagPeer(p, e.tagUseful)
} else {
e.peerTagger.TagPeer(p, e.tagUseful, score)
}
})
px.Go(func(ppx process.Process) {
<-ppx.Closing()
e.scoreLedger.Stop()
})
}
func (e *Engine) startBlockstoreManager(px process.Process) {
e.bsm.start()
px.Go(func(ppx process.Process) {
<-ppx.Closing()
e.bsm.stop()
})
}
// Start up workers to handle requests from other nodes for the data on this node
func (e *Engine) StartWorkers(ctx context.Context, px process.Process) {
e.startBlockstoreManager(px)
e.startScoreLedger(px)
e.taskWorkerLock.Lock()
defer e.taskWorkerLock.Unlock()
for i := 0; i < e.taskWorkerCount; i++ {
px.Go(func(_ process.Process) {
e.taskWorker(ctx)
})
}
}
func (e *Engine) onPeerAdded(p peer.ID) {
e.peerTagger.TagPeer(p, e.tagQueued, queuedTagWeight)
}
func (e *Engine) onPeerRemoved(p peer.ID) {
e.peerTagger.UntagPeer(p, e.tagQueued)
}
// WantlistForPeer returns the list of keys that the given peer has asked for
func (e *Engine) WantlistForPeer(p peer.ID) []wl.Entry {
e.lock.RLock()
defer e.lock.RUnlock()
return e.peerLedger.WantlistForPeer(p)
}
// LedgerForPeer returns aggregated data communication with a given peer.
func (e *Engine) LedgerForPeer(p peer.ID) *Receipt {
return e.scoreLedger.GetReceipt(p)
}
// Each taskWorker pulls items off the request queue up to the maximum size
// and adds them to an envelope that is passed off to the bitswap workers,
// which send the message to the network.
func (e *Engine) taskWorker(ctx context.Context) {
defer e.taskWorkerExit()
for {
oneTimeUse := make(chan *Envelope, 1) // buffer to prevent blocking
select {
case <-ctx.Done():
return
case e.outbox <- oneTimeUse:
}
// receiver is ready for an outoing envelope. let's prepare one. first,
// we must acquire a task from the PQ...
envelope, err := e.nextEnvelope(ctx)
if err != nil {
close(oneTimeUse)
return // ctx cancelled
}
oneTimeUse <- envelope // buffered. won't block
close(oneTimeUse)
}
}
// taskWorkerExit handles cleanup of task workers
func (e *Engine) taskWorkerExit() {
e.taskWorkerLock.Lock()
defer e.taskWorkerLock.Unlock()
e.taskWorkerCount--
if e.taskWorkerCount == 0 {
close(e.outbox)
}
}
// nextEnvelope runs in the taskWorker goroutine. Returns an error if the
// context is cancelled before the next Envelope can be created.
func (e *Engine) nextEnvelope(ctx context.Context) (*Envelope, error) {
for {
// Pop some tasks off the request queue
p, nextTasks, pendingBytes := e.peerRequestQueue.PopTasks(e.targetMessageSize)
e.updateMetrics()
for len(nextTasks) == 0 {
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-e.workSignal:
p, nextTasks, pendingBytes = e.peerRequestQueue.PopTasks(e.targetMessageSize)
e.updateMetrics()
case <-e.ticker.C:
// When a task is cancelled, the queue may be "frozen" for a
// period of time. We periodically "thaw" the queue to make
// sure it doesn't get stuck in a frozen state.
e.peerRequestQueue.ThawRound()
p, nextTasks, pendingBytes = e.peerRequestQueue.PopTasks(e.targetMessageSize)
e.updateMetrics()
}
}
// Create a new message
msg := bsmsg.New(false)
log.Debugw("Bitswap process tasks", "local", e.self, "taskCount", len(nextTasks))
// Amount of data in the request queue still waiting to be popped
msg.SetPendingBytes(int32(pendingBytes))
// Split out want-blocks, want-haves and DONT_HAVEs
blockCids := make([]cid.Cid, 0, len(nextTasks))
blockTasks := make(map[cid.Cid]*taskData, len(nextTasks))
for _, t := range nextTasks {
c := t.Topic.(cid.Cid)
td := t.Data.(*taskData)
if td.HaveBlock {
if td.IsWantBlock {
blockCids = append(blockCids, c)
blockTasks[c] = td
} else {
// Add HAVES to the message
msg.AddHave(c)
}
} else {
// Add DONT_HAVEs to the message
msg.AddDontHave(c)
}
}
// Fetch blocks from datastore
blks, err := e.bsm.getBlocks(ctx, blockCids)
if err != nil {
// we're dropping the envelope but that's not an issue in practice.
return nil, err
}
for c, t := range blockTasks {
blk := blks[c]
// If the block was not found (it has been removed)
if blk == nil {
// If the client requested DONT_HAVE, add DONT_HAVE to the message
if t.SendDontHave {
msg.AddDontHave(c)
}
} else {
// Add the block to the message
// log.Debugf(" make evlp %s->%s block: %s (%d bytes)", e.self, p, c, len(blk.RawData()))
msg.AddBlock(blk)
}
}
// If there's nothing in the message, bail out
if msg.Empty() {
e.peerRequestQueue.TasksDone(p, nextTasks...)
continue
}
log.Debugw("Bitswap engine -> msg", "local", e.self, "to", p, "blockCount", len(msg.Blocks()), "presenceCount", len(msg.BlockPresences()), "size", msg.Size())
return &Envelope{
Peer: p,
Message: msg,
Sent: func() {
// Once the message has been sent, signal the request queue so
// it can be cleared from the queue
e.peerRequestQueue.TasksDone(p, nextTasks...)
// Signal the worker to check for more work
e.signalNewWork()
},
}, nil
}
}
// Outbox returns a channel of one-time use Envelope channels.
func (e *Engine) Outbox() <-chan (<-chan *Envelope) {
return e.outbox
}
// Peers returns a slice of Peers with whom the local node has active sessions.
func (e *Engine) Peers() []peer.ID {
e.lock.RLock()
defer e.lock.RUnlock()
return e.peerLedger.CollectPeerIDs()
}
// MessageReceived is called when a message is received from a remote peer.
// For each item in the wantlist, add a want-have or want-block entry to the
// request queue (this is later popped off by the workerTasks)
func (e *Engine) MessageReceived(ctx context.Context, p peer.ID, m bsmsg.BitSwapMessage) {
entries := m.Wantlist()
if len(entries) > 0 {
log.Debugw("Bitswap engine <- msg", "local", e.self, "from", p, "entryCount", len(entries))
for _, et := range entries {
if !et.Cancel {
if et.WantType == pb.Message_Wantlist_Have {
log.Debugw("Bitswap engine <- want-have", "local", e.self, "from", p, "cid", et.Cid)
} else {
log.Debugw("Bitswap engine <- want-block", "local", e.self, "from", p, "cid", et.Cid)
}
}
}
}
if m.Empty() {
log.Infof("received empty message from %s", p)
}
newWorkExists := false
defer func() {
if newWorkExists {
e.signalNewWork()
}
}()
// Dispatch entries
wants, cancels := e.splitWantsCancels(entries)
wants, denials := e.splitWantsDenials(p, wants)
// Get block sizes
wantKs := cid.NewSet()
for _, entry := range wants {
wantKs.Add(entry.Cid)
}
blockSizes, err := e.bsm.getBlockSizes(ctx, wantKs.Keys())
if err != nil {
log.Info("aborting message processing", err)
return
}
e.lock.Lock()
if m.Full() {
e.peerLedger.ClearPeerWantlist(p)
}
s := uint(e.peerLedger.WantlistSizeForPeer(p))
if wouldBe := s + uint(len(wants)); wouldBe > e.maxQueuedWantlistEntriesPerPeer {
log.Debugw("wantlist overflow", "local", e.self, "remote", p, "would be", wouldBe)
// truncate wantlist to avoid overflow
available, o := bits.Sub(e.maxQueuedWantlistEntriesPerPeer, s, 0)
if o != 0 {
available = 0
}
wants = wants[:available]
}
for _, entry := range wants {
e.peerLedger.Wants(p, entry.Entry)
}
for _, entry := range cancels {
log.Debugw("Bitswap engine <- cancel", "local", e.self, "from", p, "cid", entry.Cid)
if e.peerLedger.CancelWant(p, entry.Cid) {
e.peerRequestQueue.Remove(entry.Cid, p)
}
}
e.lock.Unlock()
var activeEntries []peertask.Task
// Cancel a block operation
sendDontHave := func(entry bsmsg.Entry) {
// Only add the task to the queue if the requester wants a DONT_HAVE
if e.sendDontHaves && entry.SendDontHave {
c := entry.Cid
newWorkExists = true
isWantBlock := false
if entry.WantType == pb.Message_Wantlist_Block {
isWantBlock = true
}
activeEntries = append(activeEntries, peertask.Task{
Topic: c,
Priority: int(entry.Priority),
Work: bsmsg.BlockPresenceSize(c),
Data: &taskData{
BlockSize: 0,
HaveBlock: false,
IsWantBlock: isWantBlock,
SendDontHave: entry.SendDontHave,
},
})
}
}
// Deny access to blocks
for _, entry := range denials {
log.Debugw("Bitswap engine: block denied access", "local", e.self, "from", p, "cid", entry.Cid, "sendDontHave", entry.SendDontHave)
sendDontHave(entry)
}
// For each want-have / want-block
for _, entry := range wants {
c := entry.Cid
blockSize, found := blockSizes[entry.Cid]
// If the block was not found
if !found {
log.Debugw("Bitswap engine: block not found", "local", e.self, "from", p, "cid", entry.Cid, "sendDontHave", entry.SendDontHave)
sendDontHave(entry)
} else {
// The block was found, add it to the queue
newWorkExists = true
isWantBlock := e.sendAsBlock(entry.WantType, blockSize)
log.Debugw("Bitswap engine: block found", "local", e.self, "from", p, "cid", entry.Cid, "isWantBlock", isWantBlock)
// entrySize is the amount of space the entry takes up in the
// message we send to the recipient. If we're sending a block, the
// entrySize is the size of the block. Otherwise it's the size of
// a block presence entry.
entrySize := blockSize
if !isWantBlock {
entrySize = bsmsg.BlockPresenceSize(c)
}
activeEntries = append(activeEntries, peertask.Task{
Topic: c,
Priority: int(entry.Priority),
Work: entrySize,
Data: &taskData{
BlockSize: blockSize,
HaveBlock: true,
IsWantBlock: isWantBlock,
SendDontHave: entry.SendDontHave,
},
})
}
}
// Push entries onto the request queue
if len(activeEntries) > 0 {
e.peerRequestQueue.PushTasksTruncated(e.maxQueuedWantlistEntriesPerPeer, p, activeEntries...)
e.updateMetrics()
}
}
// Split the want-have / want-block entries from the cancel entries
func (e *Engine) splitWantsCancels(es []bsmsg.Entry) ([]bsmsg.Entry, []bsmsg.Entry) {
wants := make([]bsmsg.Entry, 0, len(es))
cancels := make([]bsmsg.Entry, 0, len(es))
for _, et := range es {
if et.Cancel {
cancels = append(cancels, et)
} else {
wants = append(wants, et)
}
}
return wants, cancels
}
// Split the want-have / want-block entries from the block that will be denied access
func (e *Engine) splitWantsDenials(p peer.ID, allWants []bsmsg.Entry) ([]bsmsg.Entry, []bsmsg.Entry) {
if e.peerBlockRequestFilter == nil {
return allWants, nil
}
wants := make([]bsmsg.Entry, 0, len(allWants))
denied := make([]bsmsg.Entry, 0, len(allWants))
for _, et := range allWants {
if e.peerBlockRequestFilter(p, et.Cid) {
wants = append(wants, et)
} else {
denied = append(denied, et)
}
}
return wants, denied
}
// ReceivedBlocks is called when new blocks are received from the network.
// This function also updates the receive side of the ledger.
func (e *Engine) ReceivedBlocks(from peer.ID, blks []blocks.Block) {
if len(blks) == 0 {
return
}
// Record how many bytes were received in the ledger
for _, blk := range blks {
log.Debugw("Bitswap engine <- block", "local", e.self, "from", from, "cid", blk.Cid(), "size", len(blk.RawData()))
e.scoreLedger.AddToReceivedBytes(from, len(blk.RawData()))
}
}
// NotifyNewBlocks is called when new blocks becomes available locally, and in particular when the caller of bitswap
// decide to store those blocks and make them available on the network.
func (e *Engine) NotifyNewBlocks(blks []blocks.Block) {
if len(blks) == 0 {
return
}
// Get the size of each block
blockSizes := make(map[cid.Cid]int, len(blks))
for _, blk := range blks {
blockSizes[blk.Cid()] = len(blk.RawData())
}
// Check each peer to see if it wants one of the blocks we received
var work bool
for _, b := range blks {
k := b.Cid()
e.lock.RLock()
peers := e.peerLedger.Peers(k)
e.lock.RUnlock()
for _, entry := range peers {
work = true
blockSize := blockSizes[k]
isWantBlock := e.sendAsBlock(entry.WantType, blockSize)
entrySize := blockSize
if !isWantBlock {
entrySize = bsmsg.BlockPresenceSize(k)
}
e.peerRequestQueue.PushTasksTruncated(e.maxQueuedWantlistEntriesPerPeer, entry.Peer, peertask.Task{
Topic: k,
Priority: int(entry.Priority),
Work: entrySize,
Data: &taskData{
BlockSize: blockSize,
HaveBlock: true,
IsWantBlock: isWantBlock,
SendDontHave: false,
},
})
e.updateMetrics()
}
}
if work {
e.signalNewWork()
}
}
// TODO add contents of m.WantList() to my local wantlist? NB: could introduce
// race conditions where I send a message, but MessageSent gets handled after
// MessageReceived. The information in the local wantlist could become
// inconsistent. Would need to ensure that Sends and acknowledgement of the
// send happen atomically
// MessageSent is called when a message has successfully been sent out, to record
// changes.
func (e *Engine) MessageSent(p peer.ID, m bsmsg.BitSwapMessage) {
e.lock.Lock()
defer e.lock.Unlock()
// Remove sent blocks from the want list for the peer
for _, block := range m.Blocks() {
e.scoreLedger.AddToSentBytes(p, len(block.RawData()))
e.peerLedger.CancelWantWithType(p, block.Cid(), pb.Message_Wantlist_Block)
}
// Remove sent block presences from the want list for the peer
for _, bp := range m.BlockPresences() {
// Don't record sent data. We reserve that for data blocks.
if bp.Type == pb.Message_Have {
e.peerLedger.CancelWantWithType(p, bp.Cid, pb.Message_Wantlist_Have)
}
}
}
// PeerConnected is called when a new peer connects, meaning we should start
// sending blocks.
func (e *Engine) PeerConnected(p peer.ID) {
e.lock.Lock()
defer e.lock.Unlock()
e.scoreLedger.PeerConnected(p)
}
// PeerDisconnected is called when a peer disconnects.
func (e *Engine) PeerDisconnected(p peer.ID) {
e.peerRequestQueue.Clear(p)
e.lock.Lock()
defer e.lock.Unlock()
e.peerLedger.PeerDisconnected(p)
e.scoreLedger.PeerDisconnected(p)
}
// If the want is a want-have, and it's below a certain size, send the full
// block (instead of sending a HAVE)
func (e *Engine) sendAsBlock(wantType pb.Message_Wantlist_WantType, blockSize int) bool {
isWantBlock := wantType == pb.Message_Wantlist_Block
return isWantBlock || blockSize <= e.maxBlockSizeReplaceHasWithBlock
}
func (e *Engine) numBytesSentTo(p peer.ID) uint64 {
return e.LedgerForPeer(p).Sent
}
func (e *Engine) numBytesReceivedFrom(p peer.ID) uint64 {
return e.LedgerForPeer(p).Recv
}
func (e *Engine) signalNewWork() {
// Signal task generation to restart (if stopped!)
select {
case e.workSignal <- struct{}{}:
default:
}
}