Skip to content

Latest commit

 

History

History
145 lines (108 loc) · 4.58 KB

README.rst

File metadata and controls

145 lines (108 loc) · 4.58 KB

CSNLI


Neural language identification and normalisation in code switching data tailored with a three-step decoding process

Requirements

pip install -r requirements.txt
python build_viterbi.py build_ext --inplace

Download models from csnli-models.

bunzip2 lm/*
bunzip2 dicts/*
bunzip2 lid_models/*
bunzip2 nmt_models/*

Three Step Decoding

>>> from three_step_decoding import *
>>> tsd = ThreeStepDecoding('lid_models/hinglish', htrans='nmt_models/rom2hin.pt', etrans='nmt_models/eng2eng.pt')
>>> print '\n'.join(['\t'.join(x) for x in tsd.tag_sent(u'i thght mosam dfrnt hoga bs fog h')])
i   i   en
thght   thought en
mosam   मौसम hi
dfrnt   different   en
hoga    होगा  hi
bs  बस  hi
fog fog en
h   है   hi
>>> print '\n'.join(['\t'.join(x) for x in tsd.tag_sent(u'kafi dprsng situation hai yar')])
kafi    काफी  hi
dprsng  depressing  en
situation   situation   en
hai है   hi
yar यार  hi

Language Identification

>>> from lang_tagger import *
>>> lid = LID(model='lid_models/hinglish', etrans='nmt_models/eng2eng.pt', htrans='nmt_models/rom2hin.pt')
>>> lid.tag_sent(u'i thght mosam dfrnt hoga bs fog h'.split())
[(u'i', u'en'), (u'thght', u'en'), (u'mosam', u'hi'), (u'dfrnt', u'en'), (u'hoga', u'hi'), (u'bs', u'hi'), (u'fog', u'en'), (u'h', u'hi')]
>>> lid.tag_sent(u'kafi dprsng situation hai yar'.split())
[(u'kafi', u'hi'), (u'dprsng', u'en'), (u'situation', u'en'), (u'hai', u'hi'), (u'yar', u'hi')]

Work with files

python lang_tagger.py --test test_file --load lid_models/hinglish --etrans nmt_models/eng2eng.pt --htrans nmt_models/rom2hin.pt --out output_file

python three_step_decoding.py --test test_file --lid lid_models/hinglish --etrans nmt_models/eng2eng.pt --htrans nmt_models/rom2hin.pt --out output_file

Train your own models

python lang_tagger.py --help

Language Identification System

optional arguments:
  -h, --help            show this help message and exit
  --dynet-seed SEED
  --train TRAIN         CONLL/TNT Train file
  --dev DEV             CONLL/TNT Dev/Test file
  --test TEST           Raw Test file
  --eng-pretrained-embd EEMBD
                        Pretrained word2vec Embeddings
  --hin-pretrained-embd HEMBD
                        Pretrained word2vec Embeddings
  --elimit ELIMIT       load top-n English word vectors (default=all vectors,
                        recommended=400k)
  --hlimit HLIMIT       load top-n Hindi word vectors (default=all vectors,
                        recommended=200k)
  --trainer TRAINER     Trainer [cysgd|momsgd|adam|adadelta|adagrad|amsgrad]
  --activation-fn ACT_FN
                        Activation function [tanh|relu|sigmoid]
  --iter ITER           No. of Epochs
  --bvec BVEC           1 if binary embedding file else 0
  --etrans ETRANS       OpenNMT English Transliteration Model
  --htrans HTRANS       OpenNMT Hindi Transliteration Model
  --save-model SAVE_MODEL
                        Specify path to save model
  --load-model LOAD_MODEL
                        Load Pretrained Model
  --output-file OFILE   Output File

Cite

Any publication reporting the work done using this data should cite the following papers:

@inproceedings{bhat2017joining,
  title={Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data},
  author={Bhat, Irshad and Bhat, Riyaz A and Shrivastava, Manish and Sharma, Dipti},
  booktitle={Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
  volume={2},
  pages={324--330},
  year={2017}
}

@inproceedings{bhat20`18universal,
  title={Universal Dependency Parsing for Hindi-English Code-Switching},
  author={Bhat, Irshad and Bhat, Riyaz A and Shrivastava, Manish and Sharma, Dipti},
  booktitle={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)},
  volume={1},
  pages={987--998},
  year={2018}
}

Contact

Irshad Ahmad Bhat
MS-CSE IIITH, Hyderabad
bhatirshad127@gmail.com
irshad.bhat@research.iiit.ac.in