diff --git a/Dockerfile b/Dockerfile
index 73ab8246..eda52ed3 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -22,7 +22,7 @@ COPY ./midas ./midas
COPY ./*.py ./
# download model weights so the docker image can be used offline
-RUN cd weights && {curl -OL https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/dpt_hybrid-midas-501f0c75.pt; cd -; }
+RUN cd weights && {curl -OL https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt; cd -; }
RUN python3 run.py --model_type dpt_hybrid; exit 0
# entrypoint (dont forget to mount input and output directories)
diff --git a/README.md b/README.md
index 027f2143..8f3eede7 100644
--- a/README.md
+++ b/README.md
@@ -14,31 +14,31 @@ and our [preprint](https://arxiv.org/abs/2103.13413):
MiDaS was trained on 10 datasets (ReDWeb, DIML, Movies, MegaDepth, WSVD, TartanAir, HRWSI, ApolloScape, BlendedMVS, IRS) with
multi-objective optimization.
-The original model that was trained on 5 datasets (`MIX 5` in the paper) can be found [here](https://github.com/intel-isl/MiDaS/releases/tag/v2).
+The original model that was trained on 5 datasets (`MIX 5` in the paper) can be found [here](https://github.com/isl-org/MiDaS/releases/tag/v2).
### Changelog
* [Sep 2021] Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/DPT-Large).
* [Apr 2021] Released MiDaS v3.0:
- New models based on [Dense Prediction Transformers](https://arxiv.org/abs/2103.13413) are on average [21% more accurate](#Accuracy) than MiDaS v2.1
- - Additional models can be found [here](https://github.com/intel-isl/DPT)
+ - Additional models can be found [here](https://github.com/isl-org/DPT)
* [Nov 2020] Released MiDaS v2.1:
- - New model that was trained on 10 datasets and is on average about [10% more accurate](#Accuracy) than [MiDaS v2.0](https://github.com/intel-isl/MiDaS/releases/tag/v2)
- - New light-weight model that achieves [real-time performance](https://github.com/intel-isl/MiDaS/tree/master/mobile) on mobile platforms.
- - Sample applications for [iOS](https://github.com/intel-isl/MiDaS/tree/master/mobile/ios) and [Android](https://github.com/intel-isl/MiDaS/tree/master/mobile/android)
- - [ROS package](https://github.com/intel-isl/MiDaS/tree/master/ros) for easy deployment on robots
+ - New model that was trained on 10 datasets and is on average about [10% more accurate](#Accuracy) than [MiDaS v2.0](https://github.com/isl-org/MiDaS/releases/tag/v2)
+ - New light-weight model that achieves [real-time performance](https://github.com/isl-org/MiDaS/tree/master/mobile) on mobile platforms.
+ - Sample applications for [iOS](https://github.com/isl-org/MiDaS/tree/master/mobile/ios) and [Android](https://github.com/isl-org/MiDaS/tree/master/mobile/android)
+ - [ROS package](https://github.com/isl-org/MiDaS/tree/master/ros) for easy deployment on robots
* [Jul 2020] Added TensorFlow and ONNX code. Added [online demo](http://35.202.76.57/).
* [Dec 2019] Released new version of MiDaS - the new model is significantly more accurate and robust
-* [Jul 2019] Initial release of MiDaS ([Link](https://github.com/intel-isl/MiDaS/releases/tag/v1))
+* [Jul 2019] Initial release of MiDaS ([Link](https://github.com/isl-org/MiDaS/releases/tag/v1))
### Setup
1) Pick one or more models and download corresponding weights to the `weights` folder:
-- For highest quality: [dpt_large](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt)
-- For moderately less quality, but better speed on CPU and slower GPUs: [dpt_hybrid](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt)
-- For real-time applications on resource-constrained devices: [midas_v21_small](https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt)
-- Legacy convolutional model: [midas_v21](https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt)
+- For highest quality: [dpt_large](https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large-midas-2f21e586.pt)
+- For moderately less quality, but better speed on CPU and slower GPUs: [dpt_hybrid](https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt)
+- For real-time applications on resource-constrained devices: [midas_v21_small](https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small-70d6b9c8.pt)
+- Legacy convolutional model: [midas_v21](https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21-f6b98070.pt)
2) Set up dependencies:
@@ -92,18 +92,18 @@ The pretrained model is also available on [PyTorch Hub](https://pytorch.org/hub/
#### via TensorFlow or ONNX
-See [README](https://github.com/intel-isl/MiDaS/tree/master/tf) in the `tf` subdirectory.
+See [README](https://github.com/isl-org/MiDaS/tree/master/tf) in the `tf` subdirectory.
Currently only supports MiDaS v2.1. DPT-based models to be added.
#### via Mobile (iOS / Android)
-See [README](https://github.com/intel-isl/MiDaS/tree/master/mobile) in the `mobile` subdirectory.
+See [README](https://github.com/isl-org/MiDaS/tree/master/mobile) in the `mobile` subdirectory.
#### via ROS1 (Robot Operating System)
-See [README](https://github.com/intel-isl/MiDaS/tree/master/ros) in the `ros` subdirectory.
+See [README](https://github.com/isl-org/MiDaS/tree/master/ros) in the `ros` subdirectory.
Currently only supports MiDaS v2.1. DPT-based models to be added.
@@ -119,10 +119,10 @@ Zero-shot error (the lower - the better) and speed (FPS):
| MiDaS v2.1 small [URL]() | 0.1344 | **0.1344** | 0.3370 | 29.27 | **13.43** | **14.53** | 30 |
| | | | | | | |
| **Big models:** | | | | | | | GPU RTX 3090 |
-| MiDaS v2 large [URL](https://github.com/intel-isl/MiDaS/releases/download/v2/model-f46da743.pt) | 0.1246 | 0.1290 | 0.3270 | 23.90 | 9.55 | 14.29 | 51 |
-| MiDaS v2.1 large [URL](https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt) | 0.1295 | 0.1155 | 0.3285 | 16.08 | 8.71 | 12.51 | 51 |
-| MiDaS v3.0 DPT-Hybrid [URL](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt) | 0.1106 | 0.0934 | 0.2741 | 11.56 | 8.69 | 10.89 | 46 |
-| MiDaS v3.0 DPT-Large [URL](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt) | **0.1082** | **0.0888** | **0.2697** | **8.46** | **8.32** | **9.97** | 47 |
+| MiDaS v2 large [URL](https://github.com/isl-org/MiDaS/releases/download/v2/model-f46da743.pt) | 0.1246 | 0.1290 | 0.3270 | 23.90 | 9.55 | 14.29 | 51 |
+| MiDaS v2.1 large [URL](https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21-f6b98070.pt) | 0.1295 | 0.1155 | 0.3285 | 16.08 | 8.71 | 12.51 | 51 |
+| MiDaS v3.0 DPT-Hybrid [URL](https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt) | 0.1106 | 0.0934 | 0.2741 | 11.56 | 8.69 | 10.89 | 46 |
+| MiDaS v3.0 DPT-Large [URL](https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large-midas-2f21e586.pt) | **0.1082** | **0.0888** | **0.2697** | **8.46** | **8.32** | **9.97** | 47 |
diff --git a/hubconf.py b/hubconf.py
index 5be7088d..99e66189 100644
--- a/hubconf.py
+++ b/hubconf.py
@@ -20,7 +20,7 @@ def DPT_Large(pretrained=True, **kwargs):
if pretrained:
checkpoint = (
- "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt"
+ "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large-midas-2f21e586.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
@@ -43,7 +43,7 @@ def DPT_Hybrid(pretrained=True, **kwargs):
if pretrained:
checkpoint = (
- "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt"
+ "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
@@ -62,7 +62,7 @@ def MiDaS(pretrained=True, **kwargs):
if pretrained:
checkpoint = (
- "https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pt"
+ "https://github.com/isl-org/MiDaS/releases/download/v2_1/model-f6b98070.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
@@ -81,7 +81,7 @@ def MiDaS_small(pretrained=True, **kwargs):
if pretrained:
checkpoint = (
- "https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small-70d6b9c8.pt"
+ "https://github.com/isl-org/MiDaS/releases/download/v2_1/model-small-70d6b9c8.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
diff --git a/mobile/android/README.md b/mobile/android/README.md
index aecdb6b2..faf415eb 100644
--- a/mobile/android/README.md
+++ b/mobile/android/README.md
@@ -18,4 +18,4 @@ To use another model, you should convert it to `model_opt.tflite` and place it t
----
-Original repository: https://github.com/intel-isl/MiDaS
+Original repository: https://github.com/isl-org/MiDaS
diff --git a/mobile/android/models/download.gradle b/mobile/android/models/download.gradle
index 0f9da676..ce76974a 100644
--- a/mobile/android/models/download.gradle
+++ b/mobile/android/models/download.gradle
@@ -1,4 +1,4 @@
-def modelFloatDownloadUrl = "https://github.com/intel-isl/MiDaS/releases/download/v2_1/model_opt.tflite"
+def modelFloatDownloadUrl = "https://github.com/isl-org/MiDaS/releases/download/v2_1/model_opt.tflite"
def modelFloatFile = "model_opt.tflite"
task downloadModelFloat(type: Download) {
diff --git a/mobile/ios/README.md b/mobile/ios/README.md
index f430fd03..7b8eb29f 100644
--- a/mobile/ios/README.md
+++ b/mobile/ios/README.md
@@ -33,7 +33,7 @@ pip install tensorflow
### Install TensorFlowLiteSwift via Cocoapods
-Set required TensorFlowLiteSwift version in the file (`0.0.1-nightly` is recommended): https://github.com/AlexeyAB/midas_tf_ios/blob/main/Podfile#L9
+Set required TensorFlowLiteSwift version in the file (`0.0.1-nightly` is recommended): https://github.com/isl-org/MiDaS/blob/master/mobile/ios/Podfile#L9
Install: brew, ruby, cocoapods
@@ -82,7 +82,7 @@ open(model_tflite_name, "wb").write("model.tflite")
----
-Original repository: https://github.com/intel-isl/MiDaS
+Original repository: https://github.com/isl-org/MiDaS
### Examples:
diff --git a/mobile/ios/RunScripts/download_models.sh b/mobile/ios/RunScripts/download_models.sh
index 03a4bcd0..d737b39d 100644
--- a/mobile/ios/RunScripts/download_models.sh
+++ b/mobile/ios/RunScripts/download_models.sh
@@ -3,7 +3,7 @@
TFLITE_MODEL="model_opt.tflite"
TFLITE_FILE="Midas/Model/${TFLITE_MODEL}"
-MODEL_SRC="https://github.com/intel-isl/MiDaS/releases/download/v2/${TFLITE_MODEL}"
+MODEL_SRC="https://github.com/isl-org/MiDaS/releases/download/v2/${TFLITE_MODEL}"
if test -f "${TFLITE_FILE}"; then
echo "INFO: TF Lite model already exists. Skip downloading and use the local model."
diff --git a/ros/README.md b/ros/README.md
index 7da9666c..535ba121 100644
--- a/ros/README.md
+++ b/ros/README.md
@@ -18,14 +18,14 @@ MiDaS is a neural network to compute depth from a single image.
* install ROS Melodic for Ubuntu 17.10 / 18.04:
```bash
-wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_melodic_ubuntu_17_18.sh
+wget https://raw.githubusercontent.com/isl-org/MiDaS/master/ros/additions/install_ros_melodic_ubuntu_17_18.sh
./install_ros_melodic_ubuntu_17_18.sh
```
or Noetic for Ubuntu 20.04:
```bash
-wget https://raw.githubusercontent.com/intel-isl/MiDaS/master/ros/additions/install_ros_noetic_ubuntu_20.sh
+wget https://raw.githubusercontent.com/isl-org/MiDaS/master/ros/additions/install_ros_noetic_ubuntu_20.sh
./install_ros_noetic_ubuntu_20.sh
```
@@ -61,7 +61,7 @@ source ~/.bashrc
cd ~/
mkdir catkin_ws
cd catkin_ws
-git clone https://github.com/intel-isl/MiDaS
+git clone https://github.com/isl-org/MiDaS
mkdir src
cp -r MiDaS/ros/* src
diff --git a/ros/additions/downloads.sh b/ros/additions/downloads.sh
index fd4b1736..9c967d4e 100644
--- a/ros/additions/downloads.sh
+++ b/ros/additions/downloads.sh
@@ -1,5 +1,5 @@
mkdir ~/.ros
-wget https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small-traced.pt
+wget https://github.com/isl-org/MiDaS/releases/download/v2_1/model-small-traced.pt
cp ./model-small-traced.pt ~/.ros/model-small-traced.pt
diff --git a/ros/midas_cpp/package.xml b/ros/midas_cpp/package.xml
index 1b346fc1..9cac90eb 100644
--- a/ros/midas_cpp/package.xml
+++ b/ros/midas_cpp/package.xml
@@ -6,7 +6,7 @@
Alexey Bochkovskiy
MIT
- https://github.com/AlexeyAB/midas_ros
+ https://github.com/isl-org/MiDaS/tree/master/ros
diff --git a/tf/README.md b/tf/README.md
index a613da6c..5b5fe0e6 100644
--- a/tf/README.md
+++ b/tf/README.md
@@ -11,8 +11,8 @@
### Run inference on TensorFlow-model by using TensorFlow
-1) Download the model weights [model-f6b98070.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pb)
-and [model-small.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.pb) and place the
+1) Download the model weights [model-f6b98070.pb](https://github.com/isl-org/MiDaS/releases/download/v2_1/model-f6b98070.pb)
+and [model-small.pb](https://github.com/isl-org/MiDaS/releases/download/v2_1/model-small.pb) and place the
file in the `/tf/` folder.
2) Set up dependencies:
@@ -47,8 +47,8 @@ pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0
### Run inference on ONNX-model by using ONNX-Runtime
-1) Download the model weights [model-f6b98070.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.onnx)
-and [model-small.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.onnx) and place the
+1) Download the model weights [model-f6b98070.onnx](https://github.com/isl-org/MiDaS/releases/download/v2_1/model-f6b98070.onnx)
+and [model-small.onnx](https://github.com/isl-org/MiDaS/releases/download/v2_1/model-small.onnx) and place the
file in the `/tf/` folder.
2) Set up dependencies:
@@ -87,7 +87,7 @@ pip install onnxruntime==1.5.2
### Make ONNX model from downloaded Pytorch model file
-1) Download the model weights [model-f6b98070.pt](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pt) and place the
+1) Download the model weights [model-f6b98070.pt](https://github.com/isl-org/MiDaS/releases/download/v2_1/model-f6b98070.pt) and place the
file in the root folder.
2) Set up dependencies: