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Chapter 1

Introduction

This chapter presents introductory context for the project, and frames the scope of the

project around key challenges associated with targeted maneuvering of solar sail spacecraft

in planetocentric orbits.

1.1 Scope

This project aims to develop a guidance law for performing planetocentric orbital transfers

with a solar sail spacecraft, using a simplified feedback approach derived from Lyapunov

control theory.

The goal of the guidance law is to achieve acceptable values for time-of-flight while requiring

a minimal set of considerations for spacecraft configuration.

Convergence and time optimality of the guidance law are considered, but are not rigorously

assessed or proven. Instead, these characteristics are assessed through simulations spanning

a variety of initial/target orbits and spacecraft configurations.

An extended study is conducted to tune the parameters of the guidance law for minimum

time-of-flight.

1.2 Motivation

Low-thrust spacecraft have been the focus of spacecraft guidance research in recent decades,

paving the way for the dominance of low-thrust trajectories in contemporary space missions.

Electric propulsion has attained widespread adoption [1, 2], while solar sails have remained
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obscure [3]. Developing practical solar sailing guidance laws is a critical precursor for the

acceptance of solar sails as a useful propulsion method.

Earth orbit remains the most prolific destination for space missions, and there exist many

proposed applications of solar sailing in this domain. Existing literature is largely focused on

specific problems, including orbit raising [4], Earth escape [5], and end-of-life deorbiting [6].

A more general problem of maneuvering solar sail spacecraft between two arbitrary orbits

around a planet is considered for this project, as it has received limited study.

1.3 Key Challenges and Gap

Planetocentric orbital maneuvering of solar sail spacecraft poses two significant challenges

compared to conventional spacecraft.

1. Solar sails produce little thrust [7], making classical impulse-based orbital maneuvering

theory unsuitable for trajectory planning. Low-thrust trajectory planning for plane-

tocentric orbits is itself a challenging domain of study; traditional approaches using

collocation struggle with the “winding” nature of consecutive orbits.

2. Thrust is dependent on the orientation of the spacecraft relative to incoming sunlight.

Thrust availability depends on the direction of incident light, which cannot be directly

controlled. For example, a solar sail cannot produce thrust directly towards incoming

sunlight, akin to a sailboat sailing directly into the wind. Furthermore, real solar

sails are typically limited in terms of how much they can be misaligned from incident

sunlight, owing to both thrust production and attitude control needs [7].

Low-thrust planetocentric orbital maneuvering has been approached using methods derived

from feedback control theory [8–11]. Instead of approaching trajectory guidance as a global

optimization problem, feedback guidance laws trade global optimality for better convergence

behaviour and simplicity. This class of guidance laws has been explored in the context of

solar sailing, but formulated with an assumed form of relationship between sail thrust and

orientation relative to the Sun. Notably, a recent guidance law developed by Oguri (2023) [12]

depends on 3 parameters representing the contributions of different modes of light reflection.

A key appeal of feedback guidance laws is their relative independence from system parameters.

It is therefore appealing to consider a solar sailing guidance law which is agnostic to the

parameters of the solar sail. Such a guidance law would facilitate trajectory analysis for

unique and esoteric spacecraft designs, and remain applicable as better reflectivity models

for solar sails are developed.
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1.4 Implementation

The guidance law is implemented as a two-stage algorithm, combining a solution obtained

from conventional low-thrust feedback guidance theory with an additional set of adaptations

to make the solution amenable to solar sails.

The first stage is based on a control-Lyapunov function, Q, in a formulation called the Q-Law

first introduced by Petroupolos (2004) [9]. A reformulation presented by Varga and Pérez

(2016) [10] using analytical approximations to the derivatives of Q is used to produce a

desired sail orientation based on a spacecraft state in modified equinoctial orbital elements.

The intermediate guidance solution is regularized to obey constraints associated with the

alignment of the sail relative to incoming sunlight.

A computer model of the guidance law is tested in simulations. A MATLAB implementation

is used for high-fidelity simulations and performance validation. A lower-fidelity but faster

implementation in C is used to optimize the parameters of the guidance law for minimum

time-of-flight.
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Chapter 2

Background

This chapter presents a expands on the background covered in the introduction, discussing

specific topics driving the approach taken to solving the problem. The literature review is

divided into four sections:

1. Spacecraft trajectory guidance at large, for which solar sail guidance is a subset;

2. Feedback guidance laws, particularly the Q-Law derived from Lyapunov control theory;

3. Special considerations needed for solar sails beyond conventional low-thrust spacecraft;

4. Approaches to solar sail guidance, particularly planetocentric orbital maneuvering.

2.1 Spacecraft Trajectory Guidance at Large

This section covers essential aspects of spacecraft orbits, followed by a discussion of various

approaches used to develop guidance laws for orbital maneuvering. Techniques for low-thrust

spacecraft are given focus, as those are most relevant to solar sails.

2.1.1 The Planetocentric Guidance Problem

The general problem of planetocentric orbital maneuvering refers to altering the orbit of a

spacecraft around a parent celestial body from some initial orbit to a final target orbit. (Note

that this is different from rendezvous, which adds a further constraint that the spacecraft

must reach a certain point along the target orbit at a specific time, i.e. to meet with a

spacecraft already in that target orbit.)
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Initial Orbit

Target Orbit

Spacecraft

Figure 2.1: Cartoon illustration of the planetocentric orbital maneuvering guidance problem.

Solving the guidance problem refers to generating a sequence of applied thrust vectors which

modify the spacecraft’s orbit accordingly. Since the solution is generally not unique, the

space of all valid guidance solutions can be searched for those which result in the shortest

time of flight or the least propellant expenditure, for example. Hence, the guidance problem

is often considered approached as an optimization problem [13].

2.1.2 Description and Evolution of Spacecraft Orbits

Orbits (in the context of the two-body problem) are described using a set of 6 orbital

elements [14]. Keplerian orbital elements are the most prolific, but there exist alternative

formulations of two-body spacecraft orbits which also result in 5 elements specifying orbital

geometry/orientation and 1 element representing time.

Some examples:

• Keplerian Elements {a, e, i,Ω, ω, θ}

• Modified Equinoctial Elements {p, f, g, h, k, L} [15]

• Gooding Universal Elements {α, q, i,Ω, ω, τ} [16]

5
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Altering the orbit of a spacecraft to solve the guidance problem involves changing its orbital

elements. The process of solving for the evolution of orbital elements in time is known as

orbit propagation.

Cowell’s method [14] is a well-known way of propagating general spacecraft trajectories in

Cartesian state space. Typically this involves integrating equations of motion derived from

Newton’s second law in a form similar to the following:

d2r

dt2
= − µ

||r||3
r + f p (2.1)

Wherein f p is some perturbing acceleration (i.e. unrelated to point-mass gravity of the

central body) and r is the position vector of the spacecraft (both expressed in an inertial

frame). Although simple at first glance, a difficulty of working in Cartesian coordinates for

spacecraft guidance is that all six values of the state vector (position and velocity) change in

time, regardless of the presence of perturbations. Additionally, describing the geometry of an

orbit in terms of Cartesian state is not as straightforward as using orbital elements.

Variational Methods for Orbit Propagation

Variational equations of motion are ordinary differential equations giving the time derivatives

of orbital elements when subject to a perturbing acceleration, such as thrust from a propulsion

system. Taking Keplerian elements as an example, they take the form:

d

dt



a

e

i

Ω

ω

θ


= Af p + b

Where A ∈ R6×6, b ∈ R6×6, and typically only the last entry of b is nonzero (i.e. the other 5

orbital elements are invariant when there is zero perturbing acceleration).

When posed in terms of variational equations of motion, the guidance problem becomes one

of determining the perturbing acceleration needed at each instant in time to change the

orbital elements of the spacecraft which describe the geometry and orientation

of the orbit (e.g. in the case of Keplerian elements, a, e, i,Ω, ω).

Compared to Cowell’s method, working directly in terms of orbital elements dramatically

simplifies the analysis of guidance laws, particularly in discussing convergence to the target

orbit.

6
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Comparison with Classical Orbital Maneuvering Theory

Classical orbital maneuvering theory employs brief, high-thrust maneuvers which are ap-

proximated as impulses, leading to a sequence of discrete orbits constituting a maneuver,

and removing the need to analyze trajectories in terms of continuous equations of motion.

Impulse-based maneuvering theory has been extensively studied and is commonly taught at

the undergraduate level, as demonstrated by books such as Ref. [14]. On the other hand,

low-thrust guidance requires time integration of differential equations, making the majority

of analysis heavily-reliant on numerical simulation. One common approach used for

solving the guidance problem for a (low-thrust) solar sail spacecraft is to integrate the

variational equations of motion.

2.1.3 The Case for Modified Equinoctial Elements

The 5 Keplerian elements describing the geometry and orientation of an orbit are the semi-

major axis (a), eccentricity (e), inclination (i), right ascension of the ascending node (Ω),

and argument of periapsis (ω). The remaining orbital element used to represent time is the

true anomaly (θ). A significant challenge associated with using Keplerian elements and their

respective variational equations in trajectory analysis are the singularities which occur

for many types of orbits (e.g. circular orbits, zero-inclination orbits). Although no orbits

are perfectly circular or zero-inclination in practice, the singularities appearing in both the

orbital elements themselves and their associated variational equations cause numerical issues

in simulations.

Common solutions to this include adding “deadbands” to the values of eccentricity and

inclination, such when they are decremented under some threshold (e.g. |e| < 10−4), their

value is clamped to the lower bound until their rates of change become positive. This is the

approach taken by Petropoulos (2004) [9] to avoid reaching singularities.

Modified equinoctial orbital elements defined by Walker et. al (1985) [15] remove singularities

in all cases except for a perfectly retrograde equatorial orbit, and present many numerical

conveniences for analysis. They are defined from Keplerian elements as follows:

p = a(1− e2) h = tan(i/2) cosΩ

f = e cos(ω + Ω) k = tan(i/2) sinΩ

g = e sin(ω + Ω) L = Ω+ ω + θ

In contrast to Keplerian elements, the modified equinoctial elements (f, g, h, k) describing

the orientation of the orbit represent ratios instead of angles, and are order unity (when

7
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i ∈ [−90◦, 90◦]). Perfectly circular and equatorial orbits are handled without issues in the

variational equations of motion (shown later in Equation 3.3).

The heavy dependence of numerical simulation for the analysis low-thrust spacecraft trajecto-

ries makes modified equinoctial elements a good basis for developing a guidance law.

2.1.4 Global Optimization Methods for Low-Thrust Trajectories

One common approach used for low-thrust trajectory planning is posing the guidance problem

as a global optimization problem. At a high level, there exists two main classes of methods:

direct and indirect methods, along with variants thereof. These are presented in depth in

a survey of the state of the art by Morante et al. (2021) [17], but the essential points are

discussed here. Note that global methods often employ a Cartesian state formulation instead

of orbital elements.

Both methods construct a sequence (i.e. a time history) of control inputs which bring the

spacecraft to a targeted state. Both methods also discretize the problem by assuming a certain

form for the control inputs (e.g. piecewise polynomials). Direct methods solve for unknown

coefficients using pseudospectral or other collocation-based methods through integration of

the equations of motion and direct evaluation of the functional to be optimized. Indirect

methods (also referred to as adjoint, co-state, or primer vector methods) use the calculus

of variations and Lagrangian multipliers to produce systems of equations with sufficient

constraints for optimality which are then solved to get the unknown coefficients. As described

by Kelly (2015) in an introductory overview paper of global optimization [18], direct methods

find coefficients to minimize a functional, while indirect methods solve a system of equations

which “set the gradient of the functional to be zero”.

For interplanetary missions, the timescale of the astrodynamics (i.e. the period of orbits

around the Sun) is similar to the timescale of the optimization problem (i.e. the time of flight),

making the problem computationally tractable through use of a coarse discretization. The

Sims-Flanagan method, a direct method, is highly amenable for interplanetary trajectories

[13, 19]. Collocation-based methods (e.g. Gauss pseudospectral methods) are used in similar

applications [20, 21].

A critical weakness of global optimization approaches for trajectory planning is their depen-

dence on an initial guess. Indirect methods in particular struggle with stably converging to

a solution when presented with a poor initial guess. For simple interplanetary trajectories,

intuition is sufficient to kickstart an optimization, but the complex nature of orbital transfers

around a planet is considerably less intuitive.

8
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As discussed in the introduction, a challenging aspect of planetocentric orbital maneuvering

is the mismatch in timescales between orbital periods and time of flight. Referred to as

multirevolution transfers, trajectories making a large number of revolutions around a

planet require a very fine mesh to accurately capture the “curvature” of the orbits. An

extremely low-thrust propulsion system such as a solar sail may need hundreds of revolutions

to raise its orbit, increasing computational complexity considerably.

Consequently, this project focuses on an entirely different approach to spacecraft guidance –

locally optimal feedback guidance.

2.2 Feedback Guidance Laws

Classical control theory is built upon the idea of simple feedback control loops. Although

designed without any guarantees for global optimality, they are simple to implement, and

can be tuned to get near-optimal performance.

The same idea has been applied to guidance in two main forms: thrust-blending and Lyapunov

control. Both approaches use formulations using orbital elements for state representation.

In both cases, the key idea is to take the difference between the current value and target

value for each orbital element, and produce a control input which decreases the error at each

timestep.

Thrust-blending (also referred to as blended control) methods find control inputs which

independently maximize the rate of decrease of the error for each of the orbital elements, and

take a linear combination of the individual inputs. This is examined more thoroughly in the

survey by Morante et al. (2021) [17].

Lyapunov methods take an alternative approach compared to thrust-blending, by instead

maximizing the rate of decrease of an error function, comprised of the errors in each orbital

element.

2.2.1 Lyapunov Methods

A brief primer on Lyapunov control theory is presented, based on an explanation from the

fundamental paper of planetocentric Lyapunov-based guidance by Ilgen (1994) [8].

Consider a dynamic system with state x(t) ∈ Rn a control input u ∈ Rm governed by some

differential equation f : Rn × Rm → Rn s.t. ẋ(t) = f(x(t), u).

Consider a function V : Rn → R, called a potential function or control-Lyapunov

9
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function, which maps each state value to some scalar. Intuitively, this can be thought of as

analogous to the potential energy of the system, which vanishes at some point x = x̂, e.g. a

mass attached to a spring, wherein V (x) = 1
2
(x− x̂)2

This dynamic system is said to be Lyapunov stable iff a potential function can be found

which meets the following conditions:

1. V (x) > 0 ∀ x ̸= x̂

2. V (x̂) = 0

3. There exists some u for all x ∈ Rn s.t.

V̇ = ∇V (x) · ẋ(t) = ∇V (x) · f(x, u) < 0

Where ∇V (x) means
dV

dxi

=

{
dV

dx1

, ...,
dV

dxn

}
Or in other words:

• V (x) is positive definite

• For every state, there exists a control input which decreases V (x) in time.

Over time, this will drive the state towards x = x̂.

This is a powerful idea, because it can be used both as a means to prove the stability of a

system, and also as a means of developing a feedback control law u = u(x, t)

Solving for the value of u at each value of x such that V̇ is minimized produces a locally

optimal feedback control law.

2.2.2 Early Control-Lyapunov Functions

Ilgen’s paper proposes a potential function which is a linear combination of the square of

the difference between each orbital element and its target value. Formulated in Keplerian

elements, it is given as:

V =
1

2

[
P1

(a− â)2

R2
e

+ P2(e− ê)2 + P3(i− î)2 + P4(Ω− Ω̂) + P5(ω − ω̂)2
]

(2.2)

where hatted values refer to target orbital elements, and Pi, i ∈ 1, ..., 5 are weighting factors.

At each timestep, the only thing needed to compute the control input is the current state of

the spacecraft – there is no dependence on past or future states, making the guidance

law extremely cheap computationally.

10
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Additionally, given the relatively simple nature of the potential function, it is possible to

derive analytical expressions for the control input. However, given that Ilgen’s potential

function is expressed in Keplerian elements, there are singularities in the derivatives of V .

Nonetheless, Ilgen demonstrates nearly time-optimal behaviour from this guidance law,

making it a competitive alternative to global methods.

Importantly, Ilgen demonstrates guaranteed convergence to the final target orbit under

certain limiting conditions. This is remarkable, as no knowledge of the global solution

is needed to converge to the target orbit. However, a complete analysis of convergence in

the general case is not given.

This paper highlights many of the key strengths and weaknesses of Lyapunov methods

for guidance. While Lyapunov methods are simple to implement, cheap to simulate, and

performant, it is challenging to rigorously analyze the performance of feedback guidance

laws, particularly with regards to convergence guarantees and convergence rate. The lack of

coupling to the global solution makes it difficult to robustly ascertain that a locally optimal

solution can be extended to the global domain.

Another example of a control-Lyapunov guidance law is demonstrated by Naasz [22].

A notable contemporary development in Lyapunov-based planetocentric orbit maneuvering

guidance is a family of guidance laws spawned from the Q-Law.

2.2.3 The Q-Law Family

The Q-Law was developed by Petropoulos [9] using a potential function of the form:

Q = (1 +WPP )
∑
œ

WœSœ

(
œ− œ̂

œ̇max

)2

œ ∈ {a, e, i,Ω, ω} (2.3)

where P is a penalty function used to impose constraints, Sœ is a scaling function for each

orbital element, andWσ, σ ∈ {P, a, e, i,Ω, ω} are weights. œ̂ represents target orbital elements,

and œ̇max represents the maximum attainable rate of change in each orbital element across

the course of an orbit (i.e. across all values of θ) and across all thrust directions (assuming a

propulsion system with fixed thrust).

Q is described as a “proximity quotient”; each term in the summation can be thought of as

the square of the minimum time needed to drive the error in a single orbital element to zero.

One of the key brilliancies of the approach is implementing a means to compensate for how

“easy” it is to change a given orbital element (through œ̇max). Orbital elements which
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have a lower possible maximum rate of change are weighed with more importance by the

potential function. This mechanism allows for the error in each orbital element to “balance

out” over time, which is important for practically ensuring stability and convergence.

œ̇max can be computed from the variational equations of motion, and results in an analytical

expression for the derivatives of Q. Note that when formulated in modified equinoctial

elements, analytical approximations are used for œ̇max [10, 11].

Petropoulos’ original paper has been built upon numerous times for different applications,

including rendezvous [11]. Varga and Pérez (2016) [10] give an implementation in modified

equinoctial elements, along with a study on optimizing the values of Wσ, σ ∈ {P, a, e, i,Ω, ω}.

The Q-Law family has demonstrated remarkably good performance when subjected to higher

fidelity studies, incorporating eclipse effects (i.e. rendering electric propulsion inoperable

when occluded from sunlight), and J2 perturbation [10]. Although solar sails are a relatively

fresh application for this type of guidance law, the long history of good performance under

challenging conditions shows promise for this project.

2.3 Considerations for Solar Sails

Solar sails are a propulsion method requiring no propellant expenditure to produce thrust.

The principle of operation is based on conservation of momentum in the reflection of incident

photons from the Sun. Challenges associated with performing controlled maneuvers using

solar sails are described, with discussions of implications on spacecraft guidance. Fundamental

principles are taken with reference to McInnes (1999) [7].

The most challenging aspects of bringing solar sails into reality are not actually related to

trajectory planning; truthfully, the greatest issues lie in the manufacturing and production

of solar sails; material science and mechanical design remain the greatest barriers to the

widespread adoption of solar sails [7]. On top of that, attitude control is a fundamental

precursor to thrust control, and is still in a highly development stage [23].

With that said, an important fact to consider is that real solar sails behave very differently

from an ideal flat sail. As discussed by Polyakhova (2018) in a review of solar sailing missions,

models describing the thrust produced by solar sails continue to change with every new

spacecraft built and flown [24].

In a perfectly idealized model, thrust is produced exactly in the direction of the sail normal,

and the cone angle can be as great as 90◦. Real solar sails have limits on maximum allowable
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cone angle due to considerations for attitude control or because the reflective material of the

sail behaves non-ideally at shallow incidence angles. Furthermore, the resultant thrust vector

is not always aligned perfectly with the sail normal. This is illustrated in Figure 2.2 below.

Thrust (F⃗ )

Sail Normal (n̂)

Incident Light ûi

Reflected Light

φ

(a) Perfectly reflecting sail, where the thrust vec-

tor is aligned with the sail normal.

Thrust (F⃗ )

Sail Normal (n̂)

Incident Light ûi

Reflected Light

φ

(b) General sail, which may scatter and absorb

incoming light, resulting in offset thrust.

Figure 2.2: Differences between a general reflectivity model and a perfectly reflecting sail.

2.3.1 Inherent Challenges of Dynamics

Even in the case of a flat perfectly reflecting sail, there are two key obstacles complicating

the application of low-thrust guidance theory to solar sail spacecraft.

1. Direction-Dependent Availability of Thrust: The thrust produced by a solar sail

is related to the cone angle φ by a factor of roughly cos2(φ) (see Equation 2.22 of Ref.

[7]). Thrust falls off considerably as the sail becomes misaligned with the direction of

incident light, and drops to zero for |φ| > 90◦. This means that at any instant in time,

only a single hemisphere of thrust directions can be realized, with the orientation of

the hemisphere being dependent on the position of the Sun – a quantity which cannot

be directly controlled. This is illustrated in Figure 2.3a.

2. Time/Position-Dependent Availability of Thrust: In addition to the limitations

on the direction in which thrust can be produced, the availability of thrust itself depends

on a clear line of sight to the Sun. In eclipse, no light hits the sail, and no thrust is

produced. This is illustrated in Figure 2.3b. For spacecraft in low orbits above a planet,

the time spent in eclipse represents a substantial fraction of the orbital period, and

exacerbates the challenge of maneuvering using a solar sail.
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Possible Thrust

DirectionsIncident Light ûi

Impossible Thrust Direction

(a) The direction of produced thrust is limited

for a (flat perfectly reflecting) solar sail.

NO THRUST!
Incident Light

Occluded

(b) Solar sails produce no thrust in eclipse.

Figure 2.3: Key challenges associated with solar sail thrust.

Both of these effects are present to a lesser degree in spacecraft using electric propulsion;

solar arrays require Sun exposure, but are typically made to rotate so that they can track

the Sun independently of the direction of the engines. Solar sails pose a more extreme set of

challenges for maneuvering, stemming from their principle of operation.

2.3.2 Diversity of Sail Geometries and Materials

McInnes (1999) [7] discusses several different solar sail geometries and reflectivity models

with considerably different forms.

Real solar sails do not adhere to perfectly flat geometries due to deformation effects [25],

and can even be designed intentionally with non-flat geometry for enhanced attitude control

capabilities [26].

IKAROS (2010) featured variable-reflectivity materials on its surface for attitude control [27],

and sail materials are an ongoing field of development, as discussed in a review of the state

of the art by NASA (2011) [28].

The key point to be made is that fixating upon a certain dynamic model for solar sails is

overly restrictive for adequate consideration of future solar sail designs.

Note that there is work done by Rios-Reyes et al. (2005) [29] and Tsunda et al. (2013) [30]

on generalizing solar sail dynamics models. These models allow for arbitrary geometries

and surface reflectivity properties, but have a large number of parameters. For the sake of

simplicity, integrating such a model into the guidance law for this project is not considered.
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2.4 Solar Sail Guidance

As with low-thrust guidance, solar sails have frequently been the subject for interplanetary

(heliocentric) trajectories. Analytical analysis of inward and outward spiral trajectories

around the Sun are discussed by McInnes (1999) [7]. However, the focus of this literature

review is on planetocentric orbital maneuvering.

In planetocentric orbits, the issues of directional thrust availability and eclipse are more severe

than when around the Sun. For instance, the “hemisphere” of allowable thrust directions

(see Figure 2.3a) makes a full revolution during each orbit around the Sun, and therefore

a solar sail in heliocentric orbit can apply thrust in nearly all directions over the course of

a single orbit. On the other hand, the position of the Sun relative to a spacecraft barely

changes over the course of a single orbit around a planet, which greatly restricts the possible

space of thrust directions. As already mentioned, eclipse is a common occurrence in low orbit

around a planet, while it is effectively nonexistent when orbiting the Sun.

2.4.1 Specialized Guidance Laws for Planetocentric Orbital Ma-

neuvers

As discussed by Polyakhova (2018) [24], there are numerous applications of solar sails in Earth

orbit, including orbit raising, de-orbiting, and sending spacecraft onto escape trajectories.

For each of these applications, a specialized guidance law can be developed.

Coverstone and Prussing (2003) [5] present a feedback guidance law for escaping Earth from

a geosynchronous transfer orbit. The technique employed is most similar to thrust-blending

guidance laws, in which the rate of change of orbital energy is maximized. This guidance law

performs to within the correct order of magnitude (in terms of time of flight) for a minimum-

time escape, and demonstrates the utility of feedback guidance laws in planetocentric orbits.

This guidance law performs a very specific task of sending a spacecraft onto an escape

trajectory, solving the guidance problem for a special case of final orbit.

Fieseler (1998) [4] discusses a scheme for orbit raising with simply applies thrust along the

velocity vector of the solar sail. This is taken as the core of a design featuring angled flaps

to direct thrust in a prograde direction without incurring excessive atmospheric drag in low

Earth orbit. This guidance scheme does not allow for targeting of a specific orbit, and a more

sophisticated guidance law would need to be used once the orbit is raised to a point where

drag is negligible.
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2.4.2 Generalized Orbital Maneuvering

The overall field of planetocentric orbital maneuvering using solar sails is much less studied

than the general low-thrust case. There are few examples of guidance laws for maneuvering

between arbitrary orbits around a planet.

One of the oldest approaches to this problem is presented by Sackett (1977) [31], using an

indirect global optimization approach. This work produced examples of both orbit-to-orbit

transfers, as well as escape trajectories. A key concern with the results from this work was

the generation of unrealistic trajectories which flew very close to or into the Earth’s surface.

MacDonald and McInnes (2005) [32] were among the first to formulate a contemporary

feedback guidance law for orbital maneuvering. Their approach was to use a feedback

guidance law using thrust-blending. This was the first use of a penalty function to prevent

the spacecraft from plunging into the Earth.

The most recent development in the field is a paper from Oguri (2023) [12], which adapts

the Q-Law for use with solar sails, by incorporating a popular sail reflectivity model into

the guidance law (done by incorporating sail thrust into the œ̇max terms of Q). This work

demonstrated that the remarkable performance of the Q-Law could be readily transferred to

solar sails given adequate consideration for solar sail dynamics.

2.5 Research Gap and Approach

Given the robustness of the Q-Law to disturbances in environment and dynamics, it is

interesting to consider an approach similar to that taken by Oguri (2023) [12], except without

needing to incorporate solar sail dynamics directly into the derivatives of Q.

The ingredients for such an approach are already well-established, and the prospect of

demonstrating good performance of a guidance law with a more general form appears feasible.

The choice of a Lyapunov-based feedback guidance law is supported by a healthy lineage of

research in low-thrust spacecraft guidance, and the inclination to keep the guidance law as

general as possible is motivated by the ongoing evolution of solar sail spacecraft designs and

dynamics models.
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Chapter 3

Problem Formulation and

Implementation

The formulation of the guidance law is presented in this chapter, along with an overview of

its implementation in numerical simulation.

3.1 Problem Definition and Assumptions

The objective of this project is to develop a feedback guidance law for transferring between

two orbits around a planet in orbit around the Sun using a solar sail spacecraft.

Stated more formally, the problem is given as:

Planetocentric Solar Sail Feedback Guidance Problem

Consider a spacecraft propelled by an ideal flat solar sail with sail loading σ and

efficiency η in an ideal 2-body orbit around a planet with gravitaional parameter µ

(which itself orbits the Sun). Let be P the radiation pressure of incident sunlight,

which comes from a known direction ûi.

Given the instantaneous spacecraft state {p, f, g, h, k, L} and target orbit described

by the elements {p̂, f̂ , ĝ, ĥ, k̂}, determine an instantaneous spacecraft orientation in

the LVLH frame (i.e. the sail normal n̂, presented in the form of steering angles α

and β) which ultimately brings the spacecraft to the target orbit.

The terms of this statement are elaborated in the proceeding subsections.
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3.1.1 Orbit and Environment

The spacecraft is assumed to be orbiting a planet, possessing an instantaneous state expressed

in modified equinoctial elements (p, f, g, h, k, L) (i.e an osculating orbit). The spacecraft is

targeting an orbit described in modified equinoctial elements, as {p̂, f̂ , ĝ, ĥ, k̂}

The position of the spacecraft with respect to the planet is given by the vector r⃗, and the

absolute velocity of the spacecraft is given by v⃗.

Remark on Notation: Mathematical notation for vectors follows the vectrix convention, as

used in Ref. [14]. Abstract vectorial quantities are written with the arrow above (e,g u⃗), and

vectors expressed in a reference frame F⃗ are written in boldface (e.g. u). Unit vectors are

given a special notation, written using a hat (e.g. û).

Reference Frames

Two reference frames are used in this problem, defined in Table 3.1, based on common

convention. The frame F⃗I has its origin at the center of the planet, and is taken to be inertial.

The F⃗LVLH is attached to the spacecraft, and its orientation is defined by the position vector

of the spacecraft and the plane of the orbit.

Frame Name Symbol x-direction y-direction z-direction

Inertial F⃗I

Points in

direction of �

Perpendicular to x̂I in

equatorial plane
ẑI = x̂I × ŷI

LVLH F⃗LVLH
r⃗

||r⃗||
r⃗×v⃗×r⃗

||r⃗×v⃗×r⃗||
r⃗×v⃗

||r⃗×v⃗||

Table 3.1: The frames involved, and their definitions.

Quantities related to the guidance law are expressed in the LVLH frame, including steering

command outputs. This choice of frame is motivated by past formulations of the Q-Law,

which are based on variational equations in the LVLH frame.

Sun

The Sun is located at a position r⃗⊙ with respect to the planet, and hence the vector going

from the Sun to the spacecraft is given by r⃗− r⃗⊙. The direction of incident light is therefore

given by û = −
r⃗−r⃗⊙

||r⃗−r⃗⊙|| .

A diagram describing the elements of the problem discussed so far is shown in Figure 3.1.
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Instantaneous

Spacecraft State

{p, f, g, h, k, L}

Target Orbit {p̂, f̂ , ĝ, ĥ, k̂}

r⃗

r⃗⊙

u⃗i

x̂I

ŷI

ẑI
x̂LVLH

ŷLVLH

ẑLVLH

(a) Spatial setup of problem, primary view.

r⃗

r⃗⊙

u⃗i

x̂I

ŷI

ẑI

x̂LVLH

ŷLVLH
ẑLVLH

(b) Spatial setup of problem, alternate view.

Figure 3.1: Diagram of key elements of the problem (multiple views for clarity). The planet

is represented by the blue circle, the Sun by the yellow circle, and the spacecraft by the black

dot.

3.1.2 Spacecraft Orientation Convention

The output of the guidance law is a spacecraft orientation in the LVLH frame. That is, the

guidance law expresses the unit vector n̂ in terms of the output steering angles α and β.

The convention used in this project follows Refs. [9–11], and is depicted in Figure 3.2.
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r⃗

x̂LVLH

ŷLVLH

ẑLVLH

n̂ (Direction of F⃗ )

α

β

Figure 3.2: Thrust angle orientation convention. Note that generally, α = 0 does NOT

correspond to the direction of the velocity vector of the spacecraft, as F⃗LVLH is aligned with

r⃗ and r⃗ × v⃗. The dashed grey line represents the tangent line to the orbit, which is generally

not aligned with ŷLVLH.

α is a clockwise steering angle from the y-axis in the xy LVLH plane, and β is a steering

angle towards the +z axis.

That is to say, the direction vector of the spacecraft is given by:

n̂(α, β) = F⃗T
LVLH

cos β sinα

cos β cosα

sin β

 (3.1)

3.1.3 Dynamics

Sail Thrust

Dynamics for an idealized flat solar sail are presented and used in the implementation of

numerical simulations.

For a solar sail pointing in the direction n̂ and for incident light in the direction ûi, the

acceleration imparted on the sail is given by:

F⃗ =
2Pη

σ
(ûi · n̂)2sign(ûi · n̂)n̂ [ms−2] (3.2)

Where P = 9.12 × 10−6Nm−2 is the value of solar radiation pressure at a distance of 1

AU. The quantity σ = m
A

[kgm−2] referred to as sail loading is the mass of the spacecraft

divided by the sail area, and is conventionally used to parameterize sail performance. A

dimensionless efficiency factor η represents “how reflective” the material of the sail is, relative
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to a perfect reflector. The leading coefficient of 2 results from force imparted both by incident

and reflected photons.

Variational Equations of Motion

The equations of motion of the spacecraft are given by (3.3) below.

d

dt



p

f

g

h

k

L


=

1

q

√
p

µ



0 2p 0

q sinL (q + 1) cosL+ f −g(h sinL− k cosL)

−q cosL (q + 1) sinL+ g f(h sinL− k cosL)

0 0 cosL
2

(1 + h2 + k2)

0 0 sinL
2

(1 + h2 + k2)

0 0 h sinL− k cosL



Fr

Fθ

Fn

+



0

0

0

0

0

q2
√
µp

p2


(3.3)

with q ≡ 1 + f cosL+ g sinL

Fr, Fθ, Fn correspond to perturbing accelerations on the spacecraft expressed in the LVLH

frame corresponding to the radial, tangential, and normal directions respectively. That is:

F⃗ = F⃗T
LVLH

Fr

Fθ

Fn


3.1.4 Motion of the Sun

The sun is assumed to be 1.5× 108m from the center of the coordinate system, at an angle

varying by 2π in 1 year (τ = 365.25 d = 31 557 600 s).

That is,

r⃗⊙(t) = 1.5× 108 F⃗T
I

 cos(λ⊙)

sin(λ⊙) cos(ε)

sin(λ⊙) sin(ε)

m (3.4)

Where λ⊙ = 2π
τ
t, with t = 0 corresponding to the vernal equinox, and ε = 23.439◦ is the

obliquity of the ecliptic.

This is obviously not reflective of Earth’s elliptical orbit around the Sun, but it is assumed to

be adequate as a starting point.

In this analysis, the position of the Sun is considered to be quasi-static, that is, λ̇⊙ = 0,

since the motion of the Sun occurs on a timescale much longer than the period of an orbit.
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3.2 Methodology

The guidance law is implemented in a two-stage architecture, depicted in Figure 3.3 below.

The guidance law occupies the left half of the diagram (blocks in blue and green), while the

rest of the dynamics are shown in the purple blocks on the right.

Stage 1
Minimally Modified Q-Law

Stage 2
Steering Angle

Regularization Heuristic

Estimates for

Tuning
Parameters

Partial Derivatives
of 

Sail Angle Limits

Sun Ephemeris
( )

Cone angle
calculation 

Light-normal

direction 

Attitude blending

Gravitational
Parameter 

Estimate for
maximum thrust

Sail Thrust
Model

Constraints e.g.

Variational
Equations of

Motion

Figure 3.3: Architecture of the guidance law, along with the dynamics of the spacecraft.

The key idea is to consider all solar sail-related elements (direction of incident light, restrictions

on orientation) independently of the formulation for the “idealized” steering angles. The first

stage of the guidance law treats the solar sail as if it were a regular low-thrust spacecraft

capable of producing an acceleration Fmax at constant thrust. From this, it generates idealized

angles α∗, β∗, which are then regularized by the second stage to make them feasible for a

solar sail to use.

Rather than try to rework the Q-Law, the heuristic attached to the original guidance law

transforms the solar sail guidance problem into a more conventional low-thrust guidance

problem with modified dynamics. That is, the steering angle regularization block can be

thought of as being part of the dynamics, with the Q-Law operating as if it were controlling

a regular low-thrust spacecraft.
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3.3 Formulation of Minimally Modified Q-Law

The minimally modified Q-Law is derived in this section, along with a computational procedure

for assembling the steering angle outputs.

3.3.1 Control-Lyapunov Function

The minimally modified Q-Law is structured very similarly to previous works (Refs. [9–11]),

following a control-Lyapunov function Q, which is then differentiated in terms of steering

angles α, β to determine the direction maximizing −Q̇.

The control-Lyapunov function is given below in Equation 3.5.

Q = (1 +WPP )
∑
œ

WœSœ

(
œ− œ̂

œ̇max[α,β,L]

)2

œ ∈ {p, f, g, h, k} (3.5)

Sœ =

 1
Re

œ = p

1 Otherwise

P = exp

[
γ

(
1− rp

rp,min

)]
a =

p

1− e2

rp = a(1− e) = p
(1− e)

(1 + e)(1− e)
=

p

1 +
√

f 2 + g2

with œ̇max[α,β,L] being taken to mean the maximum achieveable rate of change in that orbital

element for any value of steering angles (α, β) and true longitude L.

The only variables in Q are œ ∈ {p, f, g, h, k}, and therefore Q can be written as a sum of

derivatives using the chain rule:

Q̇ =
∑
œ

∂Q

∂œ
œ̇

Note that Equation 3.3 in fact gives œ̇ as a function of Fr, Fθ, Fn. The idea then is to link

Q̇ to the thrust model for the solar sail, without being overly specific. The key assumption

taken for deriving the Q-Law portion of the guidance law is to assume that the solar sail

always produces its maximum possible thrust in any direction. Hence, Equation 3.6

is taken to be true for the purposes of deriving ideal steering angles.Fr

Fθ

Fn

 =
2Pη

σ

cos β sinα

cos β cosα

sin β

 ≡ Fmax

cos β sinα

cos β cosα

sin β

 (3.6)

23



Mingde Yin
ESC499 Interim Report

Keeping the relationship simple using only Fmax allows for a very general application of the

guidance law to a broad range of spacecraft configurations.

3.3.2 Ideal Steering Angles

By simultaneously considering Equations 3.3 and 3.6, œ̇ becomes a function of α and β.

Q̇ can therefore be expressed in a form based on steering angles, shown below:

Q̇ = D1 cos β sinα +D2 cos β cosα +D3 sin β (3.7)

For some D1, D2, D3 based on other variables/parameters. Finding the stationary point of

Q̇ with respect to (α, β) gives:

α∗ = atan2 (−D1,−D2) (3.8)

β∗ = atan2

(
−D3,

√
D2

1 +D2
2

)
(3.9)

which maximizes −Q̇. This form is obtained from Ref. [10], where the definition of D1 and

D2 are swapped compared to this project. The reasoning behind the ordering here is such

that D1, D2, D3 line up with Fr, Fθ, Fn.

3.3.3 Assembling the Guidance Output

The remaining piece consists of deriving expressions for all of the terms in Q and Q̇ and

assembling them to produce optimal steering angles.

Expressions for œ̇max[α,β,L]

ḟmax[α,β,L] and ġmax[α,β,L] are taken as approximate analytical forms, first developed by Ref.

[10]. The other 3 orbital elements have exact analytical expressions for maximum rate of

change, obtained by manipulating Equation 3.3.

ṗmax[α,β,L] =
2p

q

√
p

µ
Fmax

ḟmax[α,β,L] ≈ 2Fmax

√
p

µ

ġmax[α,β,L] ≈ 2Fmax

√
p

µ

ḣmax[α,β,L] =
1
2
Fmax

√
p

µ

1 + h2 + k2√
1− g2 + f

k̇max[α,β,L] =
1
2
Fmax

√
p

µ

1 + h2 + k2√
1− f 2 + g
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Partials of Q

Each partial derivative of Q can be written as:

∂Q

∂œ
= WœSœ

[
WP

∂P

∂œ

(
œ− œ̂

œ̇max[α,β,L]

)2

+ 2(1 +WPP )

(
œ− œ̂

œ̇max[α,β,L]

)]
œ ∈ {p, f, g, h, k}

The final forms of D1, D2, D3 can now be computed from this, with a few shorthands

introduced for convenience:

ΞE =
[
2
(

œ−œ̂
œ̇max[α,β,L]

)]
œ∈{p,f,g,h,k}

∈ R5

ΞP =

[
WP

∂P

∂œ

(
œ− œ̂

œ̇max[α,β,L]

)2]
œ∈{p,f,g,h,k}

∈ R5

W = diag

([
Wœ

]
œ∈{p,f,g,h,k}

)
∈ R5×5

S = diag

([
Sœ

]
œ∈{p,f,g,h,k}

)
∈ R5×5

A =


0 2p 0

q sinL (q + 1) cosL+ f −g(h sinL− k cosL)

−q cosL (q + 1) sinL+ g f(h sinL− k cosL)

0 0 cosL
2

(1 + h2 + k2)

0 0 sinL
2

(1 + h2 + k2)

 ∈ R5×3

(q is defined in Equation 3.3).

D =

D1

D2

D3

 ∈ R3

Combining everything together gives:

D =

D1

D2

D3

 = ATWS (WPΞP + (1 +WPP )ΞE) (3.10)

Combined with Equations 3.8 and 3.9, this gives a computational procedure for the ideal

steering angles.

Note that
∂P

∂œ
is calculated using symbolic algebra, and the expressions are omitted here

because they are very ugly. It should be noted that
∂P

∂œ
is nonzero only for œ ∈ {p, f, g}.
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3.4 Steering Angle Regularization Heuristic

The steering angle heuristic is formulated in this section, beginning from a conceptual

motivation of the idea.

3.4.1 Concept

If the cone angle produced by the ideal steering angles from the first stage is outside the

achievable range of the solar sail, there are two options:

1. Feather the sail: Orient the solar sail (normal) at exactly 90◦ relative to the incident

sunlight to produce zero thrust.

2. Make a Compromise: Find the “closest” valid sail orientation, subject to the cone

angle restriction. (This notion of “closeness” is elaborated upon in the formulation).

Feathering the sail is useful for situations where the cone angle suggested by the first stage

exceeds 90◦ (i.e. the sail cannot produce thrust in that direction). This prevents the spacecraft

from regressing away from its target orbit.

The latter option is particularly helpful even in the case of an ideal flat solar sail, where

the first stage of the guidance law could produce a set of steering angles resulting in a cone

angle very close to 90◦. The thrust produced in such a situation would be extremely small,

and result in less progress being made compared to if the guidance law accepted a thrust

direction which does not point exactly towards the local optimum. By accepting a non-ideal

direction, the spacecraft can still make progress towards its goal.

3.4.2 Formulation

The ideal steering angles α∗, β∗ are used to compute an idealized cone angle.

φ∗ = arccos(ûi · n̂∗) (3.11)

where n̂∗ = n̂(α∗, β∗) can be computed using (3.1) and ûi = −
r⃗⊙

||r⃗⊙|| . Both vectors are

expressed in the same frame for computational procedures (e.g. the LVLH frame).

φ∗ is compared between two angle thresholds:

1. Feathering Threshold: κf

2. Degraded Operation Threshold: κd

Consider a vector b̂ which is normal to both ûi and n̂∗. For example, b̂ = ûi × (n̂∗ × ûi).
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The resulting sail normal n̂ is then calculated as:

n̂ =


n̂∗ cosφ∗ > cosκd

cosκd ûi + sinκd b̂ cosφ∗ ∈ [cosκf , cosκd]

b̂ cosφ∗ < cosκf

(3.12)

The 3 cases in Equation 3.12 correspond to nominal, degraded, and feathered operation.

Nominal Operation

Degraded Operation

Feathered Operation

ûi

κd κf

φ∗

Steering Projection Cone

Absolute Cone Angle Limit

n̂∗

n̂

Figure 3.4: Overview of steering angle regularization heuristic. Note that this diagram is

not taken relative to any specific coordinate system, but rather aligned with the direction of

incident sunlight as the vertical.

ûi

n̂∗

n̂

(a) Nominal operations; n̂ is

equal to n̂∗.

ûi

n̂∗
n̂

(b) Degraded operations; n̂∗ is

projected onto the yellow cone.

ûi

n̂∗

n̂

(c) Feathered operations; n̂ is

normal to ûi.

Figure 3.5: Three different cases of the steering heuristic illustrated.
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Figures 3.4 and 3.5 give an overview of the steering angle heuristic, as well as a visual

depiction of each case.

The most interesting case to discuss is the degraded operation mode. The resultant direction

of n̂ is equivalent to projecting n̂∗ upon the cone formed at an angle of κf relative to ûi.

The feathering threshold κf can be set based on the maximum achievable angle for a solar

sail, while the degraded operation threshold κd can be set to an even lower angle to enforce

greater production of thrust. These parameters are completely agnostic to the solar sail

thrust model used, and could readily be extended to a variety of spacecraft configurations.

3.4.3 Assembly of Output

Following the computation of (α∗, β∗) by the first stage of the algorithm, φ∗ is computed

using Equation 3.11. n̂∗ is computed in referential form (i.e. its components are calculated

relative to some reference frame), and the vector b̂ is formed. Then, Equation 3.12 is used to

calculate n̂, using conditional expressions.

Expressing n̂ in F⃗LVLH, the steering angles α and β can be found by working backwards from

Equation 3.1. A reference formulation is given below:

α = atan2 (n̂ · x̂LVLH, n̂ · ŷLVLH)

β = atan2
(
n̂ · ẑLVLH,

√
(n̂ · x̂LVLH)2 + (n̂ · ŷLVLH)2)

)

3.5 Implementation in Simulation

With reference to the architecture in Figure 3.3 and the procedures shown above, the complete

guidance law and dynamics are implemented in two separate simulators.

Simulation is used to obtain trajectories through the solution of the planetocentric solar

sail feedback guidance problem. Several cases of the guidance problem are solved, and the

resultant trajectories are then analyzed.

3.5.1 MATLAB Implementation

Link to GitHub Repository

The MATLAB implementation, named “SLyGA” (Solar Lyapunov Guidance Algorithm) is

the more fully featured simulator of the pair. SLyGA includes diagnostic metrics and plotting

utilties to generate visualizations of trajectories.
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MATLAB’s built-in ODE integrators are mature and well-tested, and therefore SLyGA is

used for high-fidelity simulation cases.

A key drawback of this implementation is its speed – simulation runs take anywhere from

tens of seconds to several minutes to complete. This makes it unsuitable for optimization of

the guidance law.

3.5.2 C/Python Implementation

Link to GitHub Repository

The C/Python implementation, named “cshanty” (i.e. Sea Shanty) is built for tuning the

weights of the guidance law. The C portion of the codebase contains all of the guidance law

and dynamics, as well as a custom ODE integrator based on weights found by Verner [33].

The Python portion of the code wraps the C simulator into an interface for optimization

using SciPy [34].

3.5.3 Trajectory Cases

Table 3.2 gives four trajectory cases used to assess the performance of the guidance law.

Case p [1× 103m] f g h k L [rad]

GEO Disposal Initial 42164 0 0 0 0 0

Final 42464 0 0 Free Free N/A

Plane Change Initial 20000 0.5 0 1 0 0

Final 20000 0.5 0 -1 0 N/A

“Benchmark” Initial 20 000 0.5 −0.2 0.5 0 0

Final 25 000 0.2 0.5 0 0.3 N/A

Polar GSO Initial 11625 0.725 0 0 0 0

Final 42165 0 0 0 -1 N/A

Table 3.2: Trajectory cases.

Free orbital elements are implemented by assigning a value of zero to the corresponding

weight (i.e. Wœ = 0).

For each trajectory case, values of the guidance parameters used are presented in Table 3.3.
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Case WP γ rp,min Wp Wf Wg Wh Wk κd κf

GEO

Disposal
0 N/A N/A 5 0.5 1 0 0 70◦ 91◦

Plane

Change
1 1

10 000 km
1 1 1 1 1 70◦ 91◦

“Bench-

mark”
0 N/A N/A 1 1 1 1 1 70◦ 91◦

Polar

GSO
1 5

6878 km
1 1 1 1 1 70◦ 91◦

Table 3.3: Guidance parameters for each case.

3.6 Tuning of Guidance Algorithm

The parameters in Table 3.3 are a baseline obtained from manual tuning. Optimization is

performed to find the parameters yielding minimum time-of-flight.

3.6.1 Sail Angle Heuristic Tuning

Keeping κf fixed, the value of κd is optimized using bounded univariate optimization through

measured time-of-flight in the Benchmark case. The value of κd in the interval [30◦, 85◦] is

determined using Brent’s method [35].

The resultant optimum of κd ≈ 64◦ is used for proceeding analysis of all the other cases. Note

that this is not an exact optimum for all of the other cases, and further tuning is to be done

on a case-by-case basis.

3.6.2 Orbital Element Weight Tuning

All five weights Wœ, œ ∈ {p, f, g, h, k} are optimized using a simulated-annealing global

optimization algorithm. The computationally efficient implementation of the simulation in C

allows for the global optimization runs to perform thousands of iterations in under one hour.
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Chapter 4

Results and Discussion

This chapter discusses the outcomes of each trajectory case, in the context of guidance law

performance. Consideration of the methodology is used to explain some of the observed

behaviours, and deficiencies are noted for improvement.

4.1 Baseline Case Runs

This section covers the baseline trajectory cases outlines in Tables 3.2 and 3.3.

Table 4.1 summarizes the outcomes of each case. Discussion proceeds.

Case
Convergence

Tolerance

Time of

Flight (d)

Number of

Revolutions

∆v Expenditure

(m/s)

GEO Disposal 0.005 62.44 62 13.1

Plane Change 0.005 1020 1944 13570.3

“Benchmark” 0.005 610 858 6673.2

Polar GSO 0.03 490 494 9686.7

Table 4.1: Summary of outcomes for each case.

Overall, it is evident that despite being convergent, the guidance law is extremely slow in

bringing the spacecraft to the target orbit.

The low thrust produced by the sail is not the key issue; rather, it is the lack of availability

of thrust in a given direction. For example, a continuous thrust plane change maneuver
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involves continuously changing the direction of applied thrust. The direction desired by the

first stage of the guidance law is not always available, and the solar sail often ends up being

feathered (this effect has not yet been quantified; pending measurement of time spent in

degraded/feathered operational mode).

Part of the issue with the long time of flight is the convergence tolerance (measured as the

sum of the squares of the error in each element, weighed by Wœ; this will be changed to the

value of Q in the future). The guidance law can reach an error of about 0.05 reasonably

quickly, but spends a substantial amount of time finely correcting its trajectory at the end,

resulting in very slow convergence to the final threshold.

For initial orbits very close to the target orbit (e.g. GEO disposal case), the guidance law

struggles with closing the gap, and often results in extremely long missions. Altering guidance

weights helps with this somewhat (see the guidance weights of the GEO disposal case, for

example), but it is currently unknown whether there are also numerical artifacts to consider.

More insights are evident through inspection of the plots of the trajectory and orbital elements.

Discussion on these is presented in the next section.

4.2 Global Optimization Runs

Global weight optimization was performed for the latter two baseline cases. The optimized

guidance law tunings are compared against their unoptimized counterparts in Table 4.2.

Case
Time of

Flight (d)

Number of

Revolutions

∆v Expenditure

(m/s)

“Benchmark”, baseline 610 858 6673.2

“Benchmark”, optimized 388 622 6193.0

Polar GSO, baseline 490 494 9686.7

Polar GSO, optimized 375 323 8352.0

Table 4.2: Comparison of optimized cases against their baselines.

The two cases still use their original convergence tolerances in the optimized tunings.

Plots of the trajectories and orbital elements are shown in Sections 4.2.1 and 4.2.2.
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4.2.1 Benchmark Case

Baseline Wœ: {1, 1, 1, 1, 1}
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(a) Evolution of orbit elements in time. (b) Trajectory plot.

Figure 4.1: Benchmark transfer case, baseline.

Optimal Wœ: {1.774, 0.5149, 0.3327, 9.925, 0.5317}
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(a) Evolution of orbit elements in time. (b) Trajectory plot.

Figure 4.2: Benchmark transfer case, optimal tuning.
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4.2.2 Polar GSO Case

Baseline Wœ: {1, 1, 1, 1, 1}
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(a) Evolution of orbit elements in time. (b) Trajectory plot.

Figure 4.3: GTO to polar transfer, baseline.

Optimal Wœ: {8.959, 2.132, 1.722, 3.559, 9.789}
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(a) Evolution of orbit elements in time. (b) Trajectory plot.

Figure 4.4: GTO to polar transfer, optimal tuning.

Note: animated versions of the trajectory plots can be found on this
webpage.
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4.2.3 Discussion

The improvement in time-of-flight (and number of revolutions) is remarkable. By inspecting

the plots of the orbital elements, it is clear that adjusting the weights of the guidance changes

the “strategy” employed by the guidance law.

By emphasizing certain elements over others, the guidance law is more willing to accept an

increase in error in one element for a reduction in another. This is exemplified in Figure 4.2a.

By inspecting the trajectory plots, it is evident that the optimized transfers “waste fewer

actions” compared to their baseline counterparts. In the Benchmark case, the total ∆v

expenditures are very similar, but the trajectory taken by the optimized tuning looks far

more direct than the baseline case.
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Chapter 5

Future Work

Next steps are identified for work on the guidance law, and a development timeline is

presented.

5.1 Further Development of the Guidance Law

Subsequent work for the guidance law is divided into two sections:

1. Refining the guidance law for better performance. For example, determining the limits

of what the guidance law can handle before it becomes non-convergent.

2. Subjecting the guidance law to new system dynamics. For example, applying the

guidance law to spacecraft in Venus orbit instead of Earth, or even heliocentric orbits.

Both pathways are considered, and are to be worked on in parallel.

5.1.1 Performance Improvements and Characterization

Although the basic structure of the guidance law has been established, there are many

possibilities for tuning the guidance law and revising its structure to improve performance

under challenging conditions. Increasing the number of cases simulated is a good overall

target for motivating immediate next steps.

Feature Completion

The first step in continuing to simulate trajectory cases is to ensure that the numerical

implementations of the project are feature-complete.
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Notably missing from the work done so far is a thorough test of the the penalty function.

There are currently issues with the numerical implementation which must be debugged.

Convergence Studies

Determining limits on convergence of a feedback guidance law is challenging, but there may

be value in sweeping large swaths of the parameter space to determine if guidance law works

better for certain cases. Of key interest are orbits which are very closer to each other, such

as for the GEO disposal case.

Figuring the issues with “last-mile” convergence would mark a significant improvement. A

helpful approach in doing so may be to study the evolution of Q in time, alongside plots of

the orbital elements. As mentioned in Section 4.2.3, a quantitative analysis of how often the

sail operates in degraded or feathered mode could provide opportunities for improving the

approach taken to regularize the steering angles.

Steering Angle Regularization Heuristic Rework

The current approach for steering angle regularization is simple and functional, but lacks

a solid mathematical justification in its design. Designing a regularization scheme which is

based on some form of mathematical optimality is desirable from a point of analysis, and

may lead to better performance.

Coverstone [5] presents a feedback guidance law which maximizes the amount of thrust

generated by a solar sail towards a given direction. Oguri [12] makes use of a similar approach.

The idea is to find some n̂ = n̂† such that the product F⃗ (n̂) · n̂∗ (i.e. the projection of the

resultant acceleration upon the ideal steering direction) is maximized. This can yield an

orientation which is neither exactly on the “projection cone” nor directly facing towards n̂∗,

but which actually maximizes the “amount of progress” made towards the ideal direction.

Optimization

Further optimization runs can be performed using the current implementation, and improved

once the above changes are made.

Exploring a large variety of transfer cases may allow the discovery of trends in optimal

weights (e.g. emphasizing Wp when orbit raising is needed), such that a general heuristic can

be created for tuning guidance weights in the absence of a simulator.
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5.1.2 Applications to New Dynamics

The current dynamics model is very simple. Demonstration of robustness to plant model

variation would be a very attractive attribute for the guidance law.

Orbital Perturbations

The addition of zonal and tesseral gravitational effects is a straightforward addition to the

dynamics model which much more faithfully represents spacecraft orbits around Earth.

Adding gravity from the Sun and Moon is also relatively straightforward.

Other Bodies

Only Earth-centric orbits have been considered so far. With increasing interest in cislunar

space, it may be useful to investigate the applicablity of solar sails for translunar trajectories.

There are also mission using solar sails to the inner solar system, such as a Mercury sample

return mission proposed by Hughes [36]. Although the guidance law developed in this project

is targeted at planetocentric orbits, it may also work for heliocentric trajectories.

Sail Thrust Models

So far, only a flat idealized sail has been considered. Ref. [12] uses a more sophisticated

thrust model incorporated into the Q-Law. It would be interesting to see how the guidance

law produced in this project compares against Oguri’s.

5.2 Far Future Ideas

These ideas are unsuitable for investigation in the scope of a thesis, but would be interesting

for further work beyond the scope of this project.

Non-Keplerian Orbits

Solar sails are a prime candidate for exploiting non-Keplerian trajectories such as halo orbits

around Lagrange points; the lack of a propellant consumption leads to an uncapped mission

life in a frozen orbit. Applying the guidance law to a multibody problem could give interesting

results, but is made difficult by the lack of orbital elements to describe such trajectories.

As a Starting Point for Global Methods

The trajectories produced by the guidance law could be used as an initial guess for global

methods to kickstart their optimization processes.
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5.3 Timeline

The development timeline proceeeding the interim report is shown below in Figure 5.1,

starting the week of January 8, 2024.

Interim Report

2024S Semester – Week Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Formulation

Penalty Function

Steering Angle Heuristic Development

Perturbation Models

Alternate Bodies & Sail Thrust Models

Implementation

Simulator Development

Stable Simulator

Case Simulation

Convergence Studies

Optimization Studies

Deliverables

Presentation Work

Presentation

Writeup of Results

Final Report

Figure 5.1: Timeline for ESC499 in winter semester, post-interim report.
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