-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorting_script.py
389 lines (171 loc) · 5.52 KB
/
sorting_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import sys as sys
import mysql.connector as sql
from sklearn.model_selection import train_test_split
import category_encoders as ce
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
# In[2]:
db_connection = sql.connect(
host = '127.0.0.1',
database = 'peopledb',
user = 'peopleAdmin',
password = 'admin'
)
cursor = db_connection.cursor()
# ### CANDIDATE DATAFRAME
# In[3]:
positionId = sys.argv[1]
positionId = 2
# print(positionId)
# In[4]:
cursor.execute('''
SELECT
candidates.id,
candidates_positions_accepted.position_id,
candidates.name,
candidates_positions_accepted.accepted,
candidates.description,
candidates.title,
candidates.location,
candidates.desired_salary_range,
candidates.years_of_experience
FROM candidates, positions, candidates_positions_accepted
WHERE
candidates.id = candidates_positions_accepted.user_id AND
positions.id = candidates_positions_accepted.position_id AND
candidates_positions_accepted.user_id > 0 AND
positions.id = %s
''',(positionId,))
# In[ ]:
# In[5]:
table = cursor.fetchall()
# In[6]:
# print(type(list(table)))
# In[7]:
candiadte_df = pd.DataFrame(list(table))
# In[8]:
candiadte_df.columns = ["id","position_id","name","accepted","description","title","location","salary_range","years_of_experience"]
# In[9]:
# with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
# display(candiadte_df)
# ### SKILLS DATAFRAME
# In[10]:
cursor.execute('''
SELECT candidates.id, candidates.name, skill
FROM skills, users_skills, candidates
WHERE
skills.id = users_skills.skill_id AND
users_skills.user_id = candidates.id
''')
# In[11]:
skill_table = cursor.fetchall()
# In[12]:
skills_df = pd.DataFrame(list(skill_table),columns = ["id","name","skill"])
# In[13]:
# with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
# display(skills_df)
# In[14]:
table = pd.pivot_table(skills_df, index=['name'],
columns=['skill'], aggfunc='count', fill_value = 0)
# In[15]:
name_skill_df = table['id']
# In[16]:
# with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
# display(name_skill_df)
# ### DF MERGE
# In[17]:
full_df = pd.merge(
candiadte_df,
name_skill_df,
left_on = "name",
right_on ="name"
)
# In[18]:
# with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also
# display(full_df[full_df.accepted == 1.0])
# ### TRAINING DATA
# In[19]:
training_data = full_df[full_df.accepted >= 0]
# full_df[full_df.accepted == 0.0 | full_df.accepted == 1.0
training_data.shape
# In[ ]:
# ### MLP USING DF
# In[ ]:
# #### Using One Hot Encoding (OHE) to transform the categorical values into numeric values that the MLP can train on
# In[20]:
ohe = ce.OneHotEncoder(handle_unknown='value', use_cat_names=True, cols=["title","location","salary_range","years_of_experience"])
# In[21]:
#Pull all data with an 'accepted' value of 1.0 (aka 'True')
unseen_data = full_df[(full_df.accepted != 1) & (full_df.accepted != 0)]
#Dropping columns that we dont want to train on
unseen_data_dirty = unseen_data.drop(["accepted","name","description"], axis=1)
#Using OHE to trasform cat values into numeric
unseen_data_clean = ohe.fit_transform(unseen_data_dirty)
#Using get_dummies to generate the columns (features) that need to be added to the training data so shapes match
unseen_encoded_dummies = pd.get_dummies(unseen_data_clean, dummy_na= True)
# In[ ]:
# In[22]:
#Adding the columns from unseen_encoded_dummies to training_data so MLP shape will match
training_encoded_for_model = training_data.reindex(columns = unseen_encoded_dummies.columns,
fill_value=0)
training_encoded_for_model.shape
# In[37]:
X_dirty = training_data.drop(["accepted","name","description"], axis=1)
# In[39]:
X = ohe.fit_transform(X_dirty)
# X = training_encoded_for_model
# X.head()
# In[ ]:
# In[40]:
y = training_data["accepted"]
# In[41]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
# In[42]:
# X_train.head()
# In[43]:
model = MLPClassifier()
# In[44]:
trained_model = model.fit(X_train, y_train)
# In[ ]:
# In[45]:
accuracy_score(y_train, model.predict(X_train))
# In[46]:
# X = ohe.fit_transform(X_dirty)
# In[47]:
unseen_data = full_df[full_df.accepted < 2]
unseen_data.shape
# In[48]:
# Test encoded column need to be added to my training data colums as dummy inputs
# In[49]:
unseen_data_dirty = unseen_data.drop(["accepted","name","description"], axis=1)
# In[50]:
unseen_data_clean = ohe.fit_transform(unseen_data_dirty)
unseen_data_clean.shape
# In[51]:
results = trained_model.predict(unseen_data_clean)
results.shape
# In[52]:
results_df = pd.DataFrame(results,columns=["accepted"])
results_df.shape
# In[53]:
# predicted_candidates = pd.merge(
# results_df,
# full_df
# )
full_df['predictions'] = results_df
# In[54]:
# full_df.head(40)
# In[55]:
print(full_df.to_json(orient='records'))
# In[ ]:
# predicted_candidates.head(50)
# In[ ]:
# print(predicted_candidates.to_csv())
# In[ ]:
# predicted_candidates.to_json()
# In[ ]: