-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
151 lines (122 loc) · 4.15 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import torch.optim as optim
from model import UNET
import torch.nn as nn
import os
from utils import (
load_checkpoint,
save_checkpoint,
get_loaders,
check_accuracy,
save_predicitions_as_imgs
)
## Hyperparameters:
LEARNING_RATE = 1e-4
DEVICE = "cuda"
BATCH_SIZE = 32
NUM_EPOCHS = 100
NUM_WORKERS = 2
IMAGE_HEIGHT = 160
IMAGE_WIDTH = 240
PIN_MEMORY = True
LOAD_MODEL = False
TRAIN_IMG_DIR = "/Users/bharatjain/Desktop/Deep Learning/UNet/dataset/train"
TRAIN_MASK_DIR = "/Users/bharatjain/Desktop/Deep Learning/UNet/dataset/train_masks"
VAL_IMG_DIR = "/Users/bharatjain/Desktop/Deep Learning/UNet/dataset/valid"
VAL_MASK_DIR = "/Users/bharatjain/Desktop/Deep Learning/UNet/dataset/valid_masks"
# %%
# ## It will do one epoch of training:
def train_fn(loader,model,optimizer,loss_fn,scaler):
loop = tqdm(loader)
for batch_idx,(data,targets) in enumerate(loop):
data = data.to(device=DEVICE)
targets = targets.float().unsqueeze(1).to(device=DEVICE)
#forward:
with torch.autocast(device_type=DEVICE):
predictions = model(data)
loss = loss_fn(predictions,targets)
#backward:
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
##Update tqdm loop:
loop.set_postfix(loss=loss.item())
## For MPS:
# def train_fn(loader, model, optimizer, loss_fn, scaler):
# loop = tqdm(loader)
# for batch_idx, (data, targets) in enumerate(loop):
# data = data.to(device=DEVICE)
# targets = targets.float().unsqueeze(1).to(device=DEVICE)
# # Forward pass (without autocast for MPS)
# predictions = model(data)
# loss = loss_fn(predictions, targets)
# # Backward pass
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# # Update tqdm loop
# loop.set_postfix(loss=loss.item())
def main():
train_transform = A.Compose([
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Rotate(limit=35, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_values=255.0, # Fixed typo in parameter name
),
ToTensorV2(),
])
val_transforms = A.Compose([
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_values=255.0, # Fixed typo in parameter name
),
ToTensorV2(),
])
model = UNET(in_channels=3,out_channels=1).to(DEVICE)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
train_loader, val_loader = get_loaders(
TRAIN_IMG_DIR,
TRAIN_MASK_DIR,
VAL_IMG_DIR,
VAL_MASK_DIR,
BATCH_SIZE,
train_transform,
val_transforms,
NUM_WORKERS,
PIN_MEMORY
)
if LOAD_MODEL:
load_checkpoint(torch.load("my_checkpoint.pth.tar"),model)
print("Metrics for the Validation Set")
check_accuracy(val_loader, model, device=DEVICE)
scaler = torch.amp.GradScaler(DEVICE)
for epoch in range(NUM_EPOCHS):
train_fn(train_loader, model, optimizer, loss_fn, None) # Pass None instead of scaler
# Save checkpoint
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict()
}
save_checkpoint(checkpoint)
# Check accuracy
print("Metrics for the Validation Set")
check_accuracy(val_loader, model, device=DEVICE)
print("Metrics for the Train Set")
check_accuracy(train_loader, model, device=DEVICE)
# Save predictions
save_predicitions_as_imgs(
val_loader, model, folder=f"{os.getcwd()}/saved_images/", device=DEVICE
)
if __name__ == "__main__":
main()