-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural.py
250 lines (197 loc) · 8.6 KB
/
neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# use natural language toolkit
import nltk
from nltk.stem.lancaster import LancasterStemmer
import os
import json
import datetime
stemmer = LancasterStemmer()
# 3 classes of training data
training_data = []
training_data.append({"class":"greeting", "sentence":"how are you?"})
training_data.append({"class":"greeting", "sentence":"how is your day?"})
training_data.append({"class":"greeting", "sentence":"good day"})
training_data.append({"class":"greeting", "sentence":"how is it going today?"})
training_data.append({"class":"goodbye", "sentence":"have a nice day"})
training_data.append({"class":"goodbye", "sentence":"see you later"})
training_data.append({"class":"goodbye", "sentence":"have a nice day"})
training_data.append({"class":"goodbye", "sentence":"talk to you soon"})
training_data.append({"class":"sandwich", "sentence":"make me a sandwich"})
training_data.append({"class":"sandwich", "sentence":"can you make a sandwich?"})
training_data.append({"class":"sandwich", "sentence":"having a sandwich today?"})
training_data.append({"class":"sandwich", "sentence":"what's for lunch?"})
print ("%s sentences in training data" % len(training_data))
words = []
classes = []
documents = []
ignore_words = ['?']
# loop through each sentence in our training data
for pattern in training_data:
# tokenize each word in the sentence
w = nltk.word_tokenize(pattern['sentence'])
# add to our words list
words.extend(w)
# add to documents in our corpus
documents.append((w, pattern['class']))
# add to our classes list
if pattern['class'] not in classes:
classes.append(pattern['class'])
# stem and lower each word and remove duplicates
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = list(set(words))
# remove duplicates
classes = list(set(classes))
print (len(documents), "documents")
print (len(classes), "classes", classes)
print (len(words), "unique stemmed words", words)
# create our training data
training = []
output = []
# create an empty array for our output
output_empty = [0] * len(classes)
# training set, bag of words for each sentence
for doc in documents:
# initialize our bag of words
bag = []
# list of tokenized words for the pattern
pattern_words = doc[0]
# stem each word
pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
# create our bag of words array
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
training.append(bag)
# output is a '0' for each tag and '1' for current tag
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
output.append(output_row)
# sample training/output
i = 0
w = documents[i][0]
print ([stemmer.stem(word.lower()) for word in w])
print (training[i])
print (output[i])
import numpy as np
import time
# compute sigmoid nonlinearity
def sigmoid(x):
output = 1/(1+np.exp(-x))
return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
return output*(1-output)
def clean_up_sentence(sentence):
# tokenize the pattern
sentence_words = nltk.word_tokenize(sentence)
# stem each word
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=False):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
def think(sentence, show_details=False):
x = bow(sentence.lower(), words, show_details)
if show_details:
print ("sentence:", sentence, "\n bow:", x)
# input layer is our bag of words
l0 = x
# matrix multiplication of input and hidden layer
l1 = sigmoid(np.dot(l0, synapse_0))
# output layer
l2 = sigmoid(np.dot(l1, synapse_1))
return l2
def train(X, y, hidden_neurons=10, alpha=1, epochs=50000, dropout=False, dropout_percent=0.5):
print ("Training with %s neurons, alpha:%s, dropout:%s %s" % (hidden_neurons, str(alpha), dropout, dropout_percent if dropout else '') )
print ("Input matrix: %sx%s Output matrix: %sx%s" % (len(X),len(X[0]),1, len(classes)) )
np.random.seed(1)
last_mean_error = 1
# randomly initialize our weights with mean 0
synapse_0 = 2*np.random.random((len(X[0]), hidden_neurons)) - 1
synapse_1 = 2*np.random.random((hidden_neurons, len(classes))) - 1
prev_synapse_0_weight_update = np.zeros_like(synapse_0)
prev_synapse_1_weight_update = np.zeros_like(synapse_1)
synapse_0_direction_count = np.zeros_like(synapse_0)
synapse_1_direction_count = np.zeros_like(synapse_1)
for j in iter(range(epochs+1)):
# Feed forward through layers 0, 1, and 2
layer_0 = X
layer_1 = sigmoid(np.dot(layer_0, synapse_0))
if(dropout):
layer_1 *= np.random.binomial([np.ones((len(X),hidden_neurons))],1-dropout_percent)[0] * (1.0/(1-dropout_percent))
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# how much did we miss the target value?
layer_2_error = y - layer_2
if (j% 10000) == 0 and j > 5000:
# if this 10k iteration's error is greater than the last iteration, break out
if np.mean(np.abs(layer_2_error)) < last_mean_error:
print ("delta after "+str(j)+" iterations:" + str(np.mean(np.abs(layer_2_error))) )
last_mean_error = np.mean(np.abs(layer_2_error))
else:
print ("break:", np.mean(np.abs(layer_2_error)), ">", last_mean_error )
break
# in what direction is the target value?
# were we really sure? if so, don't change too much.
layer_2_delta = layer_2_error * sigmoid_output_to_derivative(layer_2)
# how much did each l1 value contribute to the l2 error (according to the weights)?
layer_1_error = layer_2_delta.dot(synapse_1.T)
# in what direction is the target l1?
# were we really sure? if so, don't change too much.
layer_1_delta = layer_1_error * sigmoid_output_to_derivative(layer_1)
synapse_1_weight_update = (layer_1.T.dot(layer_2_delta))
synapse_0_weight_update = (layer_0.T.dot(layer_1_delta))
if(j > 0):
synapse_0_direction_count += np.abs(((synapse_0_weight_update > 0)+0) - ((prev_synapse_0_weight_update > 0) + 0))
synapse_1_direction_count += np.abs(((synapse_1_weight_update > 0)+0) - ((prev_synapse_1_weight_update > 0) + 0))
synapse_1 += alpha * synapse_1_weight_update
synapse_0 += alpha * synapse_0_weight_update
prev_synapse_0_weight_update = synapse_0_weight_update
prev_synapse_1_weight_update = synapse_1_weight_update
now = datetime.datetime.now()
# persist synapses
synapse = {'synapse0': synapse_0.tolist(), 'synapse1': synapse_1.tolist(),
'datetime': now.strftime("%Y-%m-%d %H:%M"),
'words': words,
'classes': classes
}
synapse_file = "synapses.json"
with open(synapse_file, 'w') as outfile:
json.dump(synapse, outfile, indent=4, sort_keys=True)
print ("saved synapses to:", synapse_file)
X = np.array(training)
y = np.array(output)
start_time = time.time()
train(X, y, hidden_neurons=20, alpha=0.1, epochs=100000, dropout=False, dropout_percent=0.2)
elapsed_time = time.time() - start_time
print ("processing time:", elapsed_time, "seconds")
# probability threshold
ERROR_THRESHOLD = 0.2
# load our calculated synapse values
synapse_file = 'synapses.json'
with open(synapse_file) as data_file:
synapse = json.load(data_file)
synapse_0 = np.asarray(synapse['synapse0'])
synapse_1 = np.asarray(synapse['synapse1'])
def classify(sentence, show_details=False):
results = think(sentence, show_details)
results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD ]
results.sort(key=lambda x: x[1], reverse=True)
return_results =[[classes[r[0]],r[1]] for r in results]
print ("%s \n classification: %s" % (sentence, return_results))
return return_results
classify("sudo make me a sandwich")
classify("how are you today?")
classify("talk to you tomorrow")
classify("who are you?")
classify("make me some lunch")
classify("how was your lunch today?")
print()
classify("good day", show_details=True)