-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_video_join.py
72 lines (57 loc) · 2.43 KB
/
main_video_join.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import cv2
import numpy as np
import torch
from torchvision import transforms
from tqdm import tqdm
def tensor_to_frame(tensor: torch.Tensor, means: torch.Tensor, stds: torch.Tensor) -> np.ndarray:
"""
Input: (C, H, W) Tensor, normalized, RGB
Output: (H, W, C) ndarray, BGR
"""
transform = transforms.Compose([
transforms.Normalize((-means / stds).tolist(), (1.0 / stds).tolist()),
transforms.Lambda(lambda x: x[[2, 1, 0], ...]), # RGB to BGR
transforms.ToPILImage(),
transforms.Lambda(lambda x: np.array(x))
])
return transform(tensor)
def main():
video_filepath = "examples/video/sintel.mp4"
root_path = "root/sintel.mp4"
frames_path = f"{root_path}/frame"
output_filepath, fourcc = "output/sintel.mp4/out_mp4v.mp4", "mp4v"
# output_filepath, fourcc = "output/sintel.mp4/out_vp90.webm", "VP90"
# output_filepath, fourcc = "output/sintel.mp4/out_ffv1.avi", "FFV1"
# output_filepath, fourcc = "output/sintel.mp4/out_xvid.avi", "xvid"
# output_filepath, fourcc = "output/sintel.mp4/out_mjpg.avi", "MJPG"
os.makedirs(os.path.dirname(output_filepath), exist_ok=True)
mean = torch.tensor((0.485, 0.456, 0.406))
std = torch.tensor((0.229, 0.224, 0.225))
# Clamping range for normalized image
min_vals = (0 - mean) / std
max_vals = (1 - mean) / std
vidcap = cv2.VideoCapture(video_filepath)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = sorted([int(x.name) for x in os.scandir(frames_path) if x.is_dir()])
if len(frame_indices) != frame_count:
print("WARNING: Number of frames in video does not match number of frames in root directory")
fourcc = cv2.VideoWriter_fourcc(*fourcc)
out = None
for frame_i in tqdm(frame_indices, desc="Joining video"):
frame_path = f"{frames_path}/{frame_i}"
styled_filepath = f"{frame_path}/styled.pt"
styled = torch.load(styled_filepath)
styled.data = styled.data.clamp_(min_vals[:, None, None], max_vals[:, None, None])
styled = tensor_to_frame(styled, mean, std)
h, w, c = styled.shape
if c == 4:
styled = styled[..., :3]
if out is None:
frame_shape = w, h
out = cv2.VideoWriter(output_filepath, fourcc, vidcap.get(cv2.CAP_PROP_FPS), frame_shape)
out.write(styled)
if out is not None:
out.release()
if __name__ == '__main__':
main()