-
Notifications
You must be signed in to change notification settings - Fork 4
/
lod_driver.py
121 lines (102 loc) · 4.45 KB
/
lod_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2019-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch
import math
import time
from collections import defaultdict
class LODDriver:
def __init__(self, cfg, logger, world_size, dataset_size):
if world_size == 8:
self.lod_2_batch = cfg.TRAIN.LOD_2_BATCH_8GPU
if world_size == 4:
self.lod_2_batch = cfg.TRAIN.LOD_2_BATCH_4GPU
if world_size == 2:
self.lod_2_batch = cfg.TRAIN.LOD_2_BATCH_2GPU
if world_size == 1:
self.lod_2_batch = cfg.TRAIN.LOD_2_BATCH_1GPU
self.world_size = world_size
self.minibatch_base = 16
self.cfg = cfg
self.dataset_size = dataset_size
self.current_epoch = 0
self.lod = -1
self.in_transition = False
self.logger = logger
self.iteration = 0
self.epoch_end_time = 0
self.epoch_start_time = 0
self.per_epoch_ptime = 0
self.reports = cfg.TRAIN.REPORT_FREQ
self.snapshots = cfg.TRAIN.SNAPSHOT_FREQ
self.tick_start_nimg_report = 0
self.tick_start_nimg_snapshot = 0
def get_lod_power2(self):
return self.lod + 2
def get_batch_size(self):
return self.lod_2_batch[min(self.lod, len(self.lod_2_batch) - 1)]
def get_dataset_size(self):
return self.dataset_size
def get_per_GPU_batch_size(self):
return self.get_batch_size() // self.world_size
def get_blend_factor(self):
if self.cfg.TRAIN.EPOCHS_PER_LOD == 0:
return 1
blend_factor = float((self.current_epoch % self.cfg.TRAIN.EPOCHS_PER_LOD) * self.dataset_size + self.iteration)
blend_factor /= float(self.cfg.TRAIN.EPOCHS_PER_LOD // 2 * self.dataset_size)
blend_factor = math.sin(blend_factor * math.pi - 0.5 * math.pi) * 0.5 + 0.5
if not self.in_transition:
blend_factor = 1
return blend_factor
def is_time_to_report(self):
if self.iteration >= self.tick_start_nimg_report + self.reports[min(self.lod, len(self.reports) - 1)] * 1000:
self.tick_start_nimg_report = self.iteration
return True
return False
def is_time_to_save(self):
if self.iteration >= self.tick_start_nimg_snapshot + self.snapshots[min(self.lod, len(self.snapshots) - 1)] * 1000:
self.tick_start_nimg_snapshot = self.iteration
return True
return False
def step(self):
self.iteration += self.get_batch_size()
self.epoch_end_time = time.time()
self.per_epoch_ptime = self.epoch_end_time - self.epoch_start_time
def set_epoch(self, epoch, optimizers):
self.current_epoch = epoch
self.iteration = 0
self.tick_start_nimg_report = 0
self.tick_start_nimg_snapshot = 0
self.epoch_start_time = time.time()
if self.cfg.TRAIN.EPOCHS_PER_LOD == 0:
self.lod = self.cfg.MODEL.LAYER_COUNT - 1
return
new_lod = min(self.cfg.MODEL.LAYER_COUNT - 1, epoch // self.cfg.TRAIN.EPOCHS_PER_LOD)
if new_lod != self.lod:
self.lod = new_lod
self.logger.info("#" * 80)
self.logger.info("# Switching LOD to %d" % self.lod)
self.logger.info("# Starting transition")
self.logger.info("#" * 80)
self.in_transition = True
for opt in optimizers:
opt.state = defaultdict(dict)
is_in_first_half_of_cycle = (epoch % self.cfg.TRAIN.EPOCHS_PER_LOD) < (self.cfg.TRAIN.EPOCHS_PER_LOD // 2)
is_growing = epoch // self.cfg.TRAIN.EPOCHS_PER_LOD == self.lod > 0
new_in_transition = is_in_first_half_of_cycle and is_growing
if new_in_transition != self.in_transition:
self.in_transition = new_in_transition
self.logger.info("#" * 80)
self.logger.info("# Transition ended")
self.logger.info("#" * 80)