-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpredict.py
182 lines (155 loc) · 5.89 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import numpy as np
import json
import torch
import torch.nn as nn
import clip
import pytorch_lightning as pl
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from PIL import Image
from timm.models.vision_transformer import resize_pos_embed
from cog import BasePredictor, Path, Input
import captioning.utils.opts as opts
import captioning.models as models
import captioning.utils.misc as utils
class Predictor(BasePredictor):
def setup(self):
import __main__
__main__.ModelCheckpoint = pl.callbacks.ModelCheckpoint
self.device = torch.device("cuda:0")
self.dict_json = json.load(open("./data/cocotalk.json"))
self.ix_to_word = self.dict_json["ix_to_word"]
self.vocab_size = len(self.ix_to_word)
self.clip_model, self.clip_transform = clip.load(
"RN50", jit=False, device=self.device
)
self.preprocess = Compose(
[
Resize((448, 448), interpolation=Image.BICUBIC),
CenterCrop((448, 448)),
ToTensor(),
]
)
def predict(
self,
image: Path = Input(
description="Input image.",
),
reward: str = Input(
choices=["mle", "cider", "clips", "cider_clips", "clips_grammar"],
default="clips_grammar",
description="Choose a reward criterion.",
),
) -> str:
self.device = torch.device("cuda:0")
self.dict_json = json.load(open("./data/cocotalk.json"))
self.ix_to_word = self.dict_json["ix_to_word"]
self.vocab_size = len(self.ix_to_word)
self.clip_model, self.clip_transform = clip.load(
"RN50", jit=False, device=self.device
)
self.preprocess = Compose(
[
Resize((448, 448), interpolation=Image.BICUBIC),
CenterCrop((448, 448)),
ToTensor(),
]
)
cfg = (
f"configs/phase1/clipRN50_{reward}.yml"
if reward == "mle"
else f"configs/phase2/clipRN50_{reward}.yml"
)
print("Loading cfg from", cfg)
opt = opts.parse_opt(parse=False, cfg=cfg)
print("vocab size:", self.vocab_size)
seq_length = 1
opt.vocab_size = self.vocab_size
opt.seq_length = seq_length
opt.batch_size = 1
opt.vocab = self.ix_to_word
print(opt.caption_model)
model = models.setup(opt)
del opt.vocab
ckpt_path = opt.checkpoint_path + "-last.ckpt"
print("Loading checkpoint from", ckpt_path)
raw_state_dict = torch.load(ckpt_path, map_location=self.device)
strict = True
state_dict = raw_state_dict["state_dict"]
if "_vocab" in state_dict:
model.vocab = utils.deserialize(state_dict["_vocab"])
del state_dict["_vocab"]
elif strict:
raise KeyError
if "_opt" in state_dict:
saved_model_opt = utils.deserialize(state_dict["_opt"])
del state_dict["_opt"]
# Make sure the saved opt is compatible with the curren topt
need_be_same = ["caption_model", "rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
if (
getattr(saved_model_opt, checkme)
in [
"updown",
"topdown",
]
and getattr(opt, checkme) in ["updown", "topdown"]
):
continue
assert getattr(saved_model_opt, checkme) == getattr(opt, checkme), (
"Command line argument and saved model disagree on '%s' " % checkme
)
elif strict:
raise KeyError
res = model.load_state_dict(state_dict, strict)
print(res)
model = model.to(self.device)
model.eval()
image_mean = (
torch.Tensor([0.48145466, 0.4578275, 0.40821073])
.to(self.device)
.reshape(3, 1, 1)
)
image_std = (
torch.Tensor([0.26862954, 0.26130258, 0.27577711])
.to(self.device)
.reshape(3, 1, 1)
)
num_patches = 196 # 600 * 1000 // 32 // 32
pos_embed = nn.Parameter(
torch.zeros(
1,
num_patches + 1,
self.clip_model.visual.attnpool.positional_embedding.shape[-1],
device=self.device,
),
)
pos_embed.weight = resize_pos_embed(
self.clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed
)
self.clip_model.visual.attnpool.positional_embedding = pos_embed
with torch.no_grad():
image = self.preprocess(Image.open(str(image)).convert("RGB"))
image = torch.tensor(np.stack([image])).to(self.device)
image -= image_mean
image /= image_std
tmp_att, tmp_fc = self.clip_model.encode_image(image)
tmp_att = tmp_att[0].permute(1, 2, 0)
att_feat = tmp_att
# Inference configurations
eval_kwargs = {}
eval_kwargs.update(vars(opt))
with torch.no_grad():
fc_feats = torch.zeros((1, 0)).to(self.device)
att_feats = att_feat.view(1, 196, 2048).float().to(self.device)
att_masks = None
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({"sample_n": 1})
seq, seq_logprobs = model(
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode="sample"
)
seq = seq.data
sents = utils.decode_sequence(model.vocab, seq)
return sents[0]