-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_coor.py
executable file
·435 lines (373 loc) · 18.8 KB
/
train_coor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torch.nn.functional as F
from torch_geometric.data import DataLoader
from torch_geometric.nn import GATConv, global_mean_pool
from scipy.spatial import distance
from sklearn.metrics import f1_score
from sklearn.metrics import mean_squared_error
from sklearn import metrics
import sys
import os
import argparse
import math
import numpy as np
from time import time
from tqdm import tqdm
from dataset import PDBBindCoor
from model import loss_fn_kd, get_soft_label, loss_fn_dir, loss_fn_cos
import plot
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", help="which model we use", type=str, default='Net_coor_res')
parser.add_argument("--loss", help="which loss function we use", type=str, default='L1Loss')
parser.add_argument("--loss_reduction", help="reduction approach for loss function", type=str, default='mean')
parser.add_argument("--lr", help="learning rate", type=float, default = 0.0001)
parser.add_argument("--epoch", help="epoch", type=int, default = 1000)
parser.add_argument("--start_epoch", help="epoch", type=int, default = 1)
parser.add_argument("--batch_size", help="batch_size", type=int, default = 64)
parser.add_argument("--atomwise", help="if we train the model atomwisely", type=int, default = 0)
parser.add_argument("--gpu_id", help="id of gpu", type=int, default = 3)
parser.add_argument("--data_path", help="train keys", type=str, default='/gpfs/group/mtk2/cyberstar/hzj5142/GNN/GNN/DGNN/data/pdbbind/pdbbind_rmsd_srand200/')
parser.add_argument("--heads", help="number of heads for multi-attention", type=int, default = 1)
parser.add_argument("--edge_dim", help="dimension of edge feature", type=int, default = 3)
parser.add_argument("--n_graph_layer", help="number of GNN layer", type=int, default = 1)
parser.add_argument("--d_graph_layer", help="dimension of GNN layer", type=int, default = 256)
parser.add_argument("--n_FC_layer", help="number of FC layer", type=int, default = 0)
parser.add_argument("--d_FC_layer", help="dimension of FC layer", type=int, default = 512)
parser.add_argument("--output", help="train result", type=str, default='none')
parser.add_argument("--model_dir", help="save best model", type=str, default='best_model.pt')
parser.add_argument("--pre_model", help="pre trained model", type=str, default='None')
parser.add_argument("--th", help="threshold for positive pose", type=float, default=3.00)
parser.add_argument("--dropout_rate", help="dropout rate", type=float, default=0.3)
parser.add_argument("--weight_bias", help="weight bias", type=float, default=1.0)
parser.add_argument("--last", help="activation of last layer", type=str, default='log')
parser.add_argument("--KD", help="if we apply knowledge distillation (Yes / No)", type=str, default='No')
parser.add_argument("--KD_soft", help="function convert rmsd to softlabel", type=str, default='exp')
parser.add_argument("--edge", help="if we use edge attr", type=bool, default=False)
parser.add_argument("--plt_dir", help="path to the plot figure", type=str, default='best_model_plt')
parser.add_argument("--flexible", help="if we only calculate flexible nodes", default=False, action='store_true')
parser.add_argument("--residue", help="if we apply residue connection to CONV layers", default=False, action='store_true')
parser.add_argument("--iterative", help="if we iteratively calculate the pose", type=int, default = 0)
parser.add_argument("--pose_limit", help="maximum poses to be evaluated", type=int, default = 0)
parser.add_argument("--step_len", help="length of the moving vector", type=float, default = 0.03)
parser.add_argument("--class_dir", help="classify the direction on each axis", default=False, action='store_true')
parser.add_argument("--hinge", help="rate of hinge loss", type=float, default = 0)
parser.add_argument("--tot_seed", help="num of seeds in the dataset", type=int, default = 8)
args = parser.parse_args()
print(args)
if args.atomwise:
args.batch_size = 1
#path = '/export/local/mfr5226/datasets/pdb/sample/'
# path = '/home/mdl/hzj5142/GNN/pdb-gnn/data/pdbbind/'
# path = '/home/mdl/hzj5142/GNN/pdb-gnn/data/pdbbind_rmsd_srand4'
path = args.data_path
train_datasets = []
test_datasets = []
train_loaders = []
test_loaders = []
train_dataset=PDBBindCoor(root=path, split='train')
test_dataset=PDBBindCoor(root=path, split='test')
train_loader=DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_loader=DataLoader(test_dataset, batch_size=1)
train_loader_size = len(train_loader.dataset)
test_dataset_size = len(test_dataset)
test_loader_size = len(test_loader.dataset)
print(f"total {len(train_datasets)} subdatasets")
print(f"train_loader_size: {train_loader_size}")
print(f"test_dataset_size: {test_dataset_size}, test_loader_size: {test_loader_size}")
weight = 4.100135326385498 + args.weight_bias
print(f"weight: 1:{weight}")
def _dir_2_coor(out, length):
out = out.exp()
x = out[:, 4:8].sum(1) - out[:, :4].sum(1)
y = out[:,[2,3,6,7]].sum(1) - out[:,[0,1,4,5]].sum(1)
z = out[:,[1,3,5,7]].sum(1) - out[:,[0,2,4,6]].sum(1)
# ans = torch.stack([out[:, 1] - out[:, 0], out[:, 3] - out[:, 2], out[:, 5] - out[:, 4]], 1)
ans = torch.stack([x, y, z], 1)
return ans*length
gpu_id = str(args.gpu_id)
device_str = 'cuda:' + gpu_id if torch.cuda.is_available() else 'cpu'
device = torch.device(device_str)
print('cuda' if torch.cuda.is_available() else 'cpu')
# model = Net(train_datasets[0].num_features, train_datasets[0].num_classes, args).to(device)
from model import Net_coor, Net_coor_res, Net_coor_dir, Net_coor_len, Net_coor_cent
if args.model_type == 'Net_coor_res':
model = Net_coor_res(train_dataset.num_features, args).to(device)
elif args.model_type == 'Net_coor':
model = Net_coor(train_dataset.num_features, args).to(device)
elif args.model_type == 'Net_coor_dir':
model = Net_coor_dir(train_dataset.num_features, args).to(device)
elif args.model_type == 'Net_coor_len':
model = Net_coor_len(train_dataset.num_features, args).to(device)
# assert args.class_dir
elif args.model_type == 'Net_coor_cent':
model = Net_coor_cent(train_dataset.num_features, args).to(device)
if args.pre_model != 'None':
model = torch.load(args.pre_model, map_location=device_str).to(device)
# loss_op = torch.nn.MSELoss()
# model.double()
# torch.set_default_dtype(torch.float64)
if args.loss == 'L1Loss':
loss_op = torch.nn.L1Loss(reduction=args.loss_reduction)
elif args.loss == 'MSELoss':
loss_op = torch.nn.MSELoss(reduction=args.loss_reduction)
elif args.loss == 'CosineEmbeddingLoss':
loss_op = torch.nn.CosineEmbeddingLoss(reduction=args.loss_reduction)
cos_target = torch.tensor([1]).to(device)
elif args.loss == 'CosineAngle':
loss_op = loss_fn_cos(device, reduction=args.loss_reduction)
loss_op2 = torch.nn.CosineEmbeddingLoss(reduction=args.loss_reduction)
# loss_op = torch.nn.CosineEmbeddingLoss(reduction='none')
cos_target = torch.tensor([1]).to(device)
if args.class_dir:
# loss_op = loss_fn_dir(device)
loss_op = torch.nn.CrossEntropyLoss()
assert args.model_type == 'Net_coor_dir'
# loss_op_kld = torch.nn.KLDivLoss()
hinge = torch.tensor([args.hinge]).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
def bond_dist(data, pred, fix_idx):
# print(data.x.size(), data.edge_index.size(), pred.size())
x = data.edge_index[0, fix_idx]
y = data.edge_index[1, fix_idx]
# print(x, y)
# print(data.flexible_idx)
# print(fix_idx)
# print(data.edge_index[:, fix_idx])
# print(data.dist)
#print(data.edge_index[1, fix_idx])
#print(fix_idx)
node_x = data.x[x, -3:] + pred[x]
node_y = data.x[y, -3:] + pred[y]
# dist = (node_x - node_y).square()
dist = torch.nn.MSELoss(reduction='none')(node_x, node_y)
return dist.sum(-1).sqrt()
def train():
model.train()
total_loss = 0
tot = 0
t = time()
pbar = tqdm(total=train_loader_size)
pbar.set_description('Training poses...')
for data in train_loader:
with torch.cuda.amp.autocast():
data = data.to(device)
if args.atomwise:
flexible_len = data.flexible_len.cpu().item()
all_atom_idx = torch.randperm(flexible_len)
avg_loss = 0.0
for idx in range(args.atomwise):
st = (idx * flexible_len) // args.atomwise
ed = ((idx + 1) * flexible_len) // args.atomwise
atom_idx = all_atom_idx[st:ed]
optimizer.zero_grad()
pred = model(data.x, data.edge_index, data.dist)[atom_idx]
loss = loss_op(pred, data.y[atom_idx])
avg_loss += loss.item()
loss.backward()
optimizer.step()
total_loss += avg_loss / args.atomwise
tot += 1
pbar.update(1)
continue
optimizer.zero_grad()
if args.flexible:
if args.model_type != 'Net_coor_cent':
pred = model(data.x, data.edge_index, data.dist)[data.flexible_idx.bool()]
if args.class_dir:
y = data.y[data.flexible_idx.bool()].gt(0).long()
y = y[:, 0] * 4 + y[:, 1] * 2 + y[:, 2]
loss = loss_op(pred, y)
elif args.loss == 'CosineEmbeddingLoss':
loss = loss_op(pred, data.y[data.flexible_idx.bool()], cos_target)
elif args.loss == 'CosineAngle':
loss = loss_op(pred, data.y[data.flexible_idx.bool()])
elif args.model_type == 'Net_coor_len':
length = data.y[data.flexible_idx.bool()].square().sum(1).sqrt().reshape(pred.size()[0],1)
loss = loss_op(pred, length)
elif args.model_type == 'Net_coor_cent':
pred = model(data.x, data.edge_index, data.dist, data.batch, data.flexible_idx.bool())
y = global_mean_pool(data.y[data.flexible_idx.bool()], data.batch[data.flexible_idx.bool()])
loss = loss_op(pred, y)
elif args.hinge != 0:
fix_idx = (data.dist[:, 0] != 0).nonzero(as_tuple=True)[0]
bond_diff = bond_dist(data, pred, fix_idx) - bond_dist(data, data.y, fix_idx)
l = fix_idx.size()[0]
loss1 = torch.nn.HingeEmbeddingLoss(margin=0.001)(bond_diff, torch.LongTensor([-1] * l).to(device))
loss = loss_op(pred, data.y) + loss1 * hinge
else:
loss = loss_op(pred, data.y)
else:
pred = model(data.x, data.edge_index, data.dist)
loss = loss_op(pred, data.y)
if args.loss == 'CosineEmbeddingLoss':
total_loss += loss.item() / pred.size()[0] * args.batch_size
if args.loss == 'CosineAngle':
total_loss += loss.item() / pred.size()[0] * args.batch_size
else:
total_loss += loss.item() * args.batch_size
loss.backward()
optimizer.step()
tot += 1
pbar.update(1)
# break
pbar.close()
print(f"trained {tot} batches, take {time() - t}s")
return total_loss / train_loader_size
@torch.no_grad()
def test(loader, epoch):
model.eval()
t = time()
total_loss = 0
total_rmsd = 0.0
total_rmsd_in = 0.0
all_rmsds = []
all_rmsds_in = []
total_atoms = 0
pose_idx = 0
gstd = 0
total_rmsds = [0.0 for i in range(args.iterative)]
avg_rmsd = 0.0
fp = 0
tp = 0
fn = 0
tn = 0
fpl = [0 for i in range(8)]
all_atoms = 0
ligand_atoms = 0
diff_complex = 0
rmsd_per_pdb = []
num_pose_per_pdb = []
rmsd_per_pdb_in = []
pdb = ''
pdbs = []
pbar = tqdm(total=test_loader_size)
pbar.set_description('Testing poses...')
for data in loader:
pbar.update(1)
# with torch.cuda.amp.autocast():
num_atoms = data.x.size()[0]
num_flexible_atoms = data.x[data.flexible_idx.bool()].size()[0]
if data.pdb != pdb:
diff_complex += 1
all_atoms = num_atoms
ligand_atoms = num_flexible_atoms
rmsd_per_pdb.append(0.0)
rmsd_per_pdb_in.append(0.0)
num_pose_per_pdb.append(0)
pdb = data.pdb
pdbs.append(pdb[0])
if data.x.size()[0] != num_atoms:
print(f"num_flexible_atoms: {num_flexible_atoms}, data.x.size: {data.x.size()[0]}, data.y.size: {num_atoms}")
if args.flexible:
if args.model_type != 'Net_coor_cent':
out = model(data.x.to(device), data.edge_index.to(device), data.dist.to(device))[data.flexible_idx.bool()]
if args.class_dir:
y = data.y[data.flexible_idx.bool()].gt(0).long().to(device)
y = y[:, 0] * 4 + y[:, 1] * 2 + y[:, 2]
loss = loss_op(out, y)
for i in range(8):
fpl[i] += y.eq(i).sum().cpu().item()
tn += y.size()[0]
out = _dir_2_coor(out, args.step_len)
elif args.loss == 'CosineEmbeddingLoss':
loss = loss_op(out, data.y.to(device)[data.flexible_idx.bool()], cos_target)
elif args.loss == 'CosineAngle':
loss = (1 - loss_op2(out, data.y.to(device)[data.flexible_idx.bool()], cos_target)).acos().sum()
elif args.model_type == 'Net_coor_len':
length = data.y.to(device)[data.flexible_idx.bool()].square().sum(1).sqrt().reshape(out.size()[0],1)
loss = loss_op(out, length)
out = data.y.to(device)[data.flexible_idx.bool()]
elif args.model_type == 'Net_coor_cent':
pred = model(data.x.to(device), data.edge_index.to(device), data.dist.to(device), data.batch.to(device), data.flexible_idx.bool().to(device)).cpu()
y = global_mean_pool(data.y[data.flexible_idx.bool()], data.batch[data.flexible_idx.bool()])
loss = loss_op(pred, y)
out = pred.repeat(num_flexible_atoms, 1)
elif args.hinge != 0:
fix_idx = (data.dist[:, 0] != 0).nonzero(as_tuple=True)[0]
bond_diff = bond_dist(data.to(device), out, fix_idx) - bond_dist(data.to(device), data.y.to(device), fix_idx)
loss1 = torch.nn.HingeEmbeddingLoss(margin=0.001)(bond_diff, torch.LongTensor([-1 for _ in fix_idx]).to(device))
loss = loss_op(out, data.y.to(device)) + loss1 * args.hinge
else:
loss = loss_op(out, data.y.to(device))
rmsds = math.sqrt(F.mse_loss(data.y.to(device), out, reduction='sum').cpu().item() / num_flexible_atoms)
total_rmsd += rmsds
all_rmsds.append(rmsds)
num_pose_per_pdb[-1] += 1
rmsd_per_pdb[-1] += rmsds
else: # not flexible
out = model(data.x.to(device), data.edge_index.to(device), data.dist.to(device))
loss = loss_op(out, data.y.to(device))
rmsds = F.mse_loss(data.y[data.flexible_idx.bool()], out.cpu()[data.flexible_idx.bool()], reduction='sum').item()
total_rmsd += math.sqrt(rmsds / num_flexible_atoms)
all_rmsds.append(math.sqrt(rmsds / num_flexible_atoms))
if (epoch <= 1):
if args.flexible:
rmsds = math.sqrt(torch.sum(torch.square(data.y)).item() / num_flexible_atoms)
total_rmsd_in += rmsds
all_rmsds_in.append(rmsds)
rmsd_per_pdb_in[-1] += rmsds
else:
rmsds = F.mse_loss(data.y, data.x[:, -3:], reduction='sum').item()
total_rmsd_in += math.sqrt(rmsds / num_atoms)
all_rmsds_in.append(math.sqrt(rmsds / num_atoms))
# all_rmsds_in = all_rmsds_in + rmsds
if args.loss == 'CosineEmbeddingLoss':
total_loss += loss.item() / num_flexible_atoms
elif args.loss == 'CosineAngle':
total_loss += loss.item() / num_flexible_atoms
else:
total_loss += loss.item()
pose_idx += 1
if args.pose_limit > 0 and pose_idx >= args.pose_limit:
break
pbar.close()
tt = time() - t
print(f"Spend {tt}s")
print(f"x: {fpl}, all: {tn}")
print([i / pose_idx for i in total_rmsds])
print(avg_rmsd / pose_idx)
print(f'diff_complex {diff_complex}')
assert diff_complex % args.tot_seed == 0
diff_complex = diff_complex // args.tot_seed
print(f'diff_complex {diff_complex}')
for ii in range(1, args.tot_seed):
for jj in range(diff_complex):
num_pose_per_pdb[jj] += num_pose_per_pdb[ii * diff_complex + jj]
rmsd_per_pdb[jj] += rmsd_per_pdb[ii * diff_complex + jj]
rmsd_per_pdb_in[jj] += rmsd_per_pdb_in[ii * diff_complex + jj]
avg_rmsd_per_pdb = sum([r / d for r, d in zip(rmsd_per_pdb[:diff_complex], num_pose_per_pdb[:diff_complex])]) / diff_complex
avg_rmsd_per_pdb_in = sum([r / d for r, d in zip(rmsd_per_pdb_in[:diff_complex], num_pose_per_pdb[:diff_complex])]) / diff_complex
return total_loss / pose_idx, avg_rmsd_per_pdb, avg_rmsd_per_pdb_in
if not os.path.isdir(args.model_dir):
os.makedirs(args.model_dir)
if not os.path.isdir(args.plt_dir):
os.makedirs(args.plt_dir)
min_rmsd = 10.0
best_epoch = 0
for epoch in range(args.start_epoch, args.start_epoch + args.epoch):
loss = train()
print(f"Train Loss: {loss}")
loss, rmsd, rmsd_in = test(test_loader, epoch)
print(f"Epoch: {epoch} Test Loss: {loss} Avg RMSD: {rmsd}")
if epoch <= 1:
print(f"Avg RMSD of inputs: {rmsd_in}")
if args.output != 'none':
with open(args.output, 'a') as f:
f.write(f"Avg RMSD of inputs: {rmsd_in}\n")
if args.output != 'none':
with open(args.output, 'a') as f:
f.write(f"Epoch: {epoch} Test Loss: {loss} Avg RMSD: {rmsd}\n")
if epoch > 3 and (min_rmsd > rmsd or epoch % 5 == 0):
saved_model_dir = os.path.join(args.model_dir, f'model_{epoch}.pt')
torch.save(model, saved_model_dir)
os.system(f'chmod 777 {saved_model_dir}')
print(f"save model at epoch {epoch}, rmsd of {rmsd*100} !!!!!!!!")
if args.output != 'none':
with open(args.output, 'a') as f:
f.write(f"save model at epoch {epoch}, rmsd of {rmsd*100} !!!!!!!!\n")
if min_rmsd > rmsd:
min_rmsd = rmsd
best_epoch = epoch
print("")
os.system(f'chmod 777 {args.output}')
print(f"\nBest model at epoch {best_epoch}, rmsd is {min_rmsd}")