-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_¬∀xP(x)↔∃x¬P(x).lean
291 lines (257 loc) · 5.51 KB
/
Pruebas_de_¬∀xP(x)↔∃x¬P(x).lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
-- Pruebas de ¬∀x P(x) ↔ ∃x ¬P(x)
-- ==============================
import tactic
variable {U : Type}
variable {P : U -> Prop}
-- ----------------------------------------------------
-- Ej. 1. Demostrar que
-- ¬∀x P(x) ⊢ ∃x ¬P(x)
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra
( assume h4 : ¬P a,
have h5 : ∃x, ¬P x,
from exists.intro a h4,
show false, from h2 h5 )),
show false, from h1 h8)
-- 2ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra
( assume h4 : ¬P a,
have h5 : ∃x, ¬P x,
from exists.intro a h4,
show false, from h2 h5 )),
h1 h8)
-- 3ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra
( assume h4 : ¬P a,
have h5 : ∃x, ¬P x,
from exists.intro a h4,
h2 h5 )),
h1 h8)
-- 4ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra
( assume h4 : ¬P a,
have h5 : ∃x, ¬P x, from ⟨a, h4⟩,
h2 h5 )),
h1 h8)
-- 5ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra
( assume h4 : ¬P a,
h2 ⟨a, h4⟩ )),
h1 h8)
-- 6ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
show P a, from
by_contra (λ h4, h2 ⟨a, h4⟩)),
h1 h8)
-- 7ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
( assume a,
by_contra (λ h4, h2 ⟨a, h4⟩)),
h1 h8)
-- 8ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
have h8 : ∀x, P x, from
(λ a, by_contra (λ h4, h2 ⟨a, h4⟩)),
h1 h8)
-- 9ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra
( assume h2 : ¬∃x, ¬P x,
h1 (λ a, by_contra (λ h4, h2 ⟨a, h4⟩)))
-- 10ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
by_contra (λ h2, h1 (λ a, by_contra (λ h4, h2 ⟨a, h4⟩)))
-- 11ª demostración
example
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
-- by library_search
not_forall.mp h1
-- 12ª demostración
lemma aux1
(h1 : ¬∀x, P x)
: ∃x, ¬P x :=
-- by hint
by finish
-- ----------------------------------------------------
-- Ej. 2. Demostrar que
-- ∃x ¬P(x) ⊢ ¬∀x P(x)
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
assume h2 : ∀x, P x,
exists.elim h1
( assume a (h3 : ¬P a),
have h4 : P a, from h2 a,
show false, from h3 h4)
-- 2ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
assume h2 : ∀x, P x,
exists.elim h1
( assume a (h3 : ¬P a),
have h4 : P a, from h2 a,
h3 h4)
-- 3ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
assume h2 : ∀x, P x,
exists.elim h1
( assume a (h3 : ¬P a),
h3 (h2 a))
-- 4ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
assume h2 : ∀x, P x,
exists.elim h1
(λ a h3, h3 (h2 a))
-- 5ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
λ h2, exists.elim h1 (λ a h3, h3 (h2 a))
-- 6ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
-- by library_search
not_forall.mpr h1
-- 7ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
assume h2 : ∀x, P x,
match h1 with ⟨a, (h3 : ¬P a)⟩ :=
( have h4 : P a, from h2 a,
show false, from h3 h4)
end
-- 8ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
begin
intro h2,
cases h1 with a h3,
apply h3,
apply h2,
end
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
begin
intro h2,
obtain ⟨a, h3⟩ := h1,
apply h3,
apply h2,
end
-- 9ª demostración
example
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
-- by hint
by tauto
-- 10ª demostración
lemma aux2
(h1 : ∃x, ¬P x)
: ¬∀x, P x :=
by finish
#print axioms aux2
-- ----------------------------------------------------
-- Ej. 3. Demostrar que
-- ¬∀x P(x) ↔ ∃x ¬P(x)
-- ----------------------------------------------------
-- 1ª demostración
example :
(¬∀x, P x) ↔ (∃x, ¬P x) :=
iff.intro
( assume h1 : ¬∀x, P x,
show ∃x, ¬P x, from aux1 h1)
( assume h2 : ∃x, ¬P x,
show ¬∀x, P x, from aux2 h2)
-- 2ª demostración
example :
(¬∀x, P x) ↔ (∃x, ¬P x) :=
iff.intro aux1 aux2
-- 3ª demostración
example :
(¬∀x, P x) ↔ (∃x, ¬P x) :=
-- by library_search
not_forall
-- 4ª demostración
example :
(¬∀x, P x) ↔ (∃x, ¬P x) :=
begin
split,
{ exact aux1, },
{ exact aux2, },
end
-- 5ª demostración
example :
(¬∀x, P x) ↔ (∃x, ¬P x) :=
-- by hint
by finish