-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_∀x(P(x)∧Q(x))↔∀xP(x)∧∀xQ(x).lean
256 lines (224 loc) · 5.58 KB
/
Pruebas_de_∀x(P(x)∧Q(x))↔∀xP(x)∧∀xQ(x).lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
-- Pruebas de ∀x (P(x) ∧ Q(x)) ↔ ∀x P(x) ∧ ∀x Q(x)
-- ===============================================
import tactic
section
variable {U : Type}
variables {P Q : U -> Prop}
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- ∀x (P(x) ∧ Q(x)) ⊢ ∀x P(x) ∧ ∀x Q(x)
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
assume a,
have h3 : P a ∧ Q a, from h1 a,
show P a, from and.elim_left h3,
have h9 : ∀x, Q x, from
assume b,
have h7 : P b ∧ Q b, from h1 b,
show Q b, from and.elim_right h7,
show (∀x, P x) ∧ (∀x, Q x), from and.intro h5 h9
-- 2ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
assume a,
have h3 : P a ∧ Q a, from h1 a,
show P a, from h3.left,
have h9 : ∀x, Q x, from
assume b,
have h7 : P b ∧ Q b, from h1 b,
show Q b, from h7.right,
show (∀x, P x) ∧ (∀x, Q x), from ⟨h5, h9⟩
-- 3ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
assume a,
have h3 : P a ∧ Q a, from h1 a,
h3.left,
have h9 : ∀x, Q x, from
assume b,
have h7 : P b ∧ Q b, from h1 b,
h7.right,
show (∀x, P x) ∧ (∀x, Q x), from ⟨h5, h9⟩
-- 4ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
assume a,
(h1 a).left,
have h9 : ∀x, Q x, from
assume b,
(h1 b).right,
show (∀x, P x) ∧ (∀x, Q x), from ⟨h5, h9⟩
-- 5ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
λ a, (h1 a).left,
have h9 : ∀x, Q x, from
λ b, (h1 b).right,
show (∀x, P x) ∧ (∀x, Q x), from ⟨h5, h9⟩
-- 6ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
have h5 : ∀x, P x, from
λ a, (h1 a).left,
have h9 : ∀x, Q x, from
λ b, (h1 b).right,
⟨h5, h9⟩
-- 7ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
⟨λ a, (h1 a).left, λ b, (h1 b).right⟩
-- 8ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
-- by library_search
forall_and_distrib.mp h1
-- 9ª demostración
example
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
begin
split,
{ intro a,
specialize h1 a,
exact h1.left, },
{ intro b,
specialize h1 b,
exact h1.right, },
end
-- 9ª demostración
lemma aux1
(h1 : ∀x, P x ∧ Q x)
: (∀x, P x) ∧ (∀x, Q x) :=
-- by hint
by finish
-- ----------------------------------------------------
-- Ej. 2. Demostrar
-- ∀x P(x) ∧ ∀x Q(x) ⊢ ∀x (P(x) ∧ Q(x))
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from and.elim_left h1,
have h4 : P a, from h3 a,
have h5 : ∀x, Q x, from and.elim_right h1,
have h6 : Q a, from h5 a,
show P a ∧ Q a, from and.intro h4 h6
-- 2ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from h1.left,
have h4 : P a, from h3 a,
have h5 : ∀x, Q x, from h1.right,
have h6 : Q a, from h5 a,
show P a ∧ Q a, from ⟨h4, h6⟩
-- 3ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from h1.left,
have h4 : P a, from h3 a,
have h5 : ∀x, Q x, from h1.right,
have h6 : Q a, from h5 a,
⟨h4, h6⟩
-- 4ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from h1.left,
have h4 : P a, from h3 a,
have h5 : ∀x, Q x, from h1.right,
⟨h4, h5 a⟩
-- 5ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from h1.left,
have h4 : P a, from h3 a,
⟨h4, h1.right a⟩
-- 6ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
have h3 : ∀x, P x, from h1.left,
⟨h3 a, h1.right a⟩
-- 7ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
assume a,
⟨h1.left a, h1.right a⟩
-- 8ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
λ a, ⟨h1.left a, h1.right a⟩
-- 9ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
-- by library_search
forall_and_distrib.mpr h1
-- 10ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
begin
cases h1 with h2 h3,
intro a,
split,
{ apply h2, },
{ apply h3, },
end
-- 11ª demostración
example
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
-- by hint
by tauto
-- 12ª demostración
lemma aux2
(h1 : (∀x, P x) ∧ (∀x, Q x))
: ∀x, P x ∧ Q x :=
by finish
-- ----------------------------------------------------
-- Ej. 3. Demostrar
-- ∀x (P(x) ∧ Q(x)) ↔ ∀x P(x) ∧ ∀x Q(x)
-- ----------------------------------------------------
-- 1ª demostración
example :
(∀x, P x ∧ Q x) ↔ (∀x, P x) ∧ (∀x, Q x) :=
iff.intro aux1 aux2
-- 2ª demostración
example :
(∀x, P x ∧ Q x) ↔ (∀x, P x) ∧ (∀x, Q x) :=
-- by library_search
forall_and_distrib
-- 3ª demostración
example :
(∀x, P x ∧ Q x) ↔ (∀x, P x) ∧ (∀x, Q x) :=
-- by hint
by finish
end