forked from Smithsonian/adc_tests
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfit_cores.py
406 lines (373 loc) · 12.8 KB
/
fit_cores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/Library/Frameworks/Python.framework/Versions/Current/bin/python
# Program to fit sine waves to each core of the adc in adc snapshots
# and calculate the offsets, gains, etc. of the individual cores
import sys
import os
import math
#from scipy import *
#import adc5g
from numpy import array, zeros, savetxt, genfromtxt, shape, size
from numpy import sum, cumsum, genfromtxt, max, min
from scipy.optimize import leastsq
from numpy import arccos, pi, empty, arange, array, absolute
from matplotlib.pyplot import plot
from scipy.special import erfc
sum_result = zeros((15), dtype=float)
result_cnt = 0
code_errors = zeros((256,4), dtype='float')
ce_counts = zeros((256, 4), dtype='int32')
def fitsin(p, s, c):
return p[0] + p[1] * s + p[2] * c
def sin_residuals(p, s, c, adc):
res = adc - fitsin(p, s, c)
for i in range(adc.size):
if adc[i] == -128 or adc[i] == 127:
res[i] = 0
return res
def fit_snap(sig_freq, samp_freq, fname, clear_avgs=True, prnt=True):
"""
Given a file containing a snapshot of data, separate the data from the
4 cores and fit a separate sine wave to each. From the dc offset, gain
and phase of the four fits, report the average and the difference of each
core from the average. Write a line in fname.fit giving these values.
Compute the average difference between the fitted value and measured value
for each level of each core averaged over the samples (the raw data for
INL corrections) and write to fname.res.
Internally, cores 1-4 are in time sequence, but when the data is
written out, write in teh sequence 1324 for cores abcd.
"""
global sum_result, result_cnt, code_errors, ce_counts
p0 = [128.0, 90.0, 90.0]
ogp = ()
# Create lists to hold parameters at sample rate
adc = [] # adc value
s = [] # sin of signal freq
c = [] # cos of signal freq
del_phi = 2 * math.pi * sig_freq / samp_freq
ifd=open(fname, 'r')
ofd = open(fname + ".ogp", 'a')
if prnt:
outfile = fname + ".a"
cfd1 = open(outfile, 'w')
outfile = fname + ".b"
cfd2 = open(outfile, 'w')
outfile = fname + ".c"
cfd3 = open(outfile, 'w')
outfile = fname + ".d"
cfd4 = open(outfile, 'w')
data_cnt = 0
for line in ifd:
if line[0] == "#":
continue
adc += [int(line)]
s += [math.sin(del_phi * data_cnt)]
c += [math.cos(del_phi * data_cnt)]
data_cnt += 1
core1 = adc[0:: 4]
core2 = adc[1:: 4]
core3 = adc[2:: 4]
core4 = adc[3:: 4]
s1 = s[0:: 4]
s2 = s[1:: 4]
s3 = s[2:: 4]
s4 = s[3:: 4]
c1 = c[0:: 4]
c2 = c[1:: 4]
c3 = c[2:: 4]
c4 = c[3:: 4]
ifd.close()
# express offsets as mV. 1 lsb = 500mV/256. z_fact converts from lsb to mV
# negate z_fact for negative feedback
z_fact = -500.0/256.0
true_zero = 0.0 * z_fact
# z_fact = 1.0
# Express delay in ps. d_fact converts from angle at sig_freq(MHz) to ps
d_fact = 1e12/(2*math.pi*sig_freq*1e6)
# This d_fact converts dly from angle at sig_freq to fraction of sample period.
# d_fact = samp_freq/(2*math.pi*sig_freq)
# d_fact = 1
args0 = (array(s), array(c), array(adc))
plsq0 = leastsq(sin_residuals, p0, args0)
#if plsq1[1] != 1:
# print "Fit failed to converge"
z0 = z_fact * plsq0[0][0]
s0a = plsq0[0][1]
c0a = plsq0[0][2]
amp0 = math.sqrt(s0a**2 + c0a**2)
dly0 = d_fact*math.atan2(s0a, c0a)
Fit0 = fitsin(plsq0[0], args0[0], args0[1])
savetxt(fname+".fit", Fit0)
ssq0 = 0.0
for i in range(data_cnt):
ssq0 += (adc[i] - Fit0[i])**2
pwr_sinad = (amp0**2)/(2*ssq0/data_cnt)
args1 = (array(s1), array(c1), array(core1))
plsq1 = leastsq(sin_residuals, p0, args1)
#if plsq1[1] != 1:
# print "Fit failed to converge"
z1 = z_fact * plsq1[0][0]
s1a = plsq1[0][1]
c1a = plsq1[0][2]
amp1 = math.sqrt(s1a**2 + c1a**2)
dly1 = d_fact*math.atan2(s1a, c1a)
args2 = (array(s2), array(c2), array(core2))
plsq2 = leastsq(sin_residuals, p0, args2)
z2 = z_fact * plsq2[0][0]
s2a = plsq2[0][1]
c2a = plsq2[0][2]
amp2 = math.sqrt(s2a**2 + c2a**2)
dly2 = d_fact*math.atan2(s2a, c2a)
args3 = (array(s3), array(c3), array(core3))
plsq3 = leastsq(sin_residuals, p0, args3)
z3 = z_fact * plsq3[0][0]
s3a = plsq3[0][1]
c3a = plsq3[0][2]
amp3 = math.sqrt(s3a**2 + c3a**2)
dly3 = d_fact*math.atan2(s3a, c3a)
args4 = (array(s4), array(c4), array(core4))
plsq4 = leastsq(sin_residuals, p0, args4)
z4 = z_fact * plsq4[0][0]
s4a = plsq4[0][1]
c4a = plsq4[0][2]
amp4 = math.sqrt(s4a**2 + c4a**2)
dly4 = d_fact*math.atan2(s4a, c4a)
avz = (z1+z2+z3+z4)/4.0
avamp = (amp1+amp2+amp3+amp4)/4.0
# Reverse the amplitude and zero differences so they can be applied to the
# offset and gain registers directly. The phase registers don't need the
# reversal
a1p = 100*(avamp -amp1)/avamp
a2p = 100*(avamp -amp2)/avamp
a3p = 100*(avamp -amp3)/avamp
a4p = 100*(avamp -amp4)/avamp
avdly = (dly1+dly2+dly3+dly4)/4.0
# print s1a, c1a, s2a, c2a, s3a, c3a, s4a, c4a
if prnt:
print "#%6.2f zero(mV) amp(%%) dly(ps) (adj by .4, .14, .11)" % (sig_freq)
print "#avg %7.4f %7.4f %8.4f" % (avz, avamp, avdly)
print "core A %7.4f %7.4f %8.4f" % (z1 -true_zero, a1p, dly1-avdly)
print "core B %7.4f %7.4f %8.4f" % (z3 -true_zero, a3p, dly3-avdly)
print "core C %7.4f %7.4f %8.4f" % (z2 -true_zero, a2p, dly2-avdly)
print "core D %7.4f %7.4f %8.4f" % (z4 -true_zero, a4p, dly4-avdly)
print "\nsinad = %.2f" % (10.0*math.log10(pwr_sinad))
if clear_avgs:
sum_result = zeros((15), dtype=float)
result_cnt = 0
code_errors = zeros((256,4), dtype='float')
ce_counts = zeros((256, 4), dtype='int32')
result = (sig_freq, avz, avamp,\
z1-true_zero, a1p, dly1-avdly, z3-true_zero, a3p, dly3-avdly, \
z2-true_zero, a2p, dly2-avdly, z4-true_zero, a4p, dly4-avdly)
result_fmt = "%8.4f "*15
sum_result += array(result)
result_cnt += 1
# print "%.3f %.3f %.3f %.3f %d" % (sum_result[5]/result_cnt,\
# sum_result[8]/result_cnt,\
# sum_result[11]/result_cnt, sum_result[14]/result_cnt, result_cnt)
if prnt and result_cnt > 1:
avg_result = sum_result/result_cnt
avg_result[0] = sig_freq
ogp = tuple(avg_result)
print >>ofd, result_cnt,
print >>ofd, result_fmt % ogp
print "average of %d measurements" % (result_cnt)
print "#avg %7.4f %7.4f %8.4f" % (ogp[1], ogp[2], 0)
print "core A %7.4f %7.4f %8.4f" % ogp[3:6]
print "core B %7.4f %7.4f %8.4f" % ogp[6:9]
print "core C %7.4f %7.4f %8.4f" % ogp[9:12]
print "core D %7.4f %7.4f %8.4f" % ogp[12:15]
print
# for each core (n), accumulate the sum of the residuals at each output code
# in code_errors[code][n]
# and the count of residuals added in ce_counts[code][n]
Fit1 = fitsin(plsq1[0], args1[0], args1[1])
for i in range(data_cnt/4):
code = core1[i]
if prnt:
print >>cfd1, "%d %d %.2f" % (4 * i, code, Fit1[i])
code_errors[code+128][0] += code - Fit1[i]
ce_counts[code+128][0] += 1
Fit2 = fitsin(plsq2[0], args2[0], args2[1])
for i in range(data_cnt/4):
code = core2[i]
if prnt:
print >>cfd3, "%d %d %.2f" % (4 * i + 1, code, Fit2[i])
code_errors[code+128][1] += code - Fit2[i]
ce_counts[code+128][1] += 1
Fit3 = fitsin(plsq3[0], args3[0], args3[1])
for i in range(data_cnt/4):
code = core3[i]
if prnt:
print >>cfd2, "%d %d %.2f" % (4 * i + 2, code, Fit3[i])
code_errors[code+128][2] += code - Fit3[i]
ce_counts[code+128][2] += 1
Fit4 = fitsin(plsq4[0], args4[0], args4[1])
for i in range(data_cnt/4):
code = core4[i]
if prnt:
print >>cfd4, "%d %d %.2f" % (4 * i + 3, code, Fit4[i])
code_errors[code+128][3] += code - Fit4[i]
ce_counts[code+128][3] += 1
if prnt:
rfd = open(fname + '.res', "w")
# Since the INL registers are addressed as offset binary, generate the
# .res file that way
for code in range(256):
if ce_counts[code].min() > 1:
e = code_errors[code]/ce_counts[code]
print >>rfd, "%3d %5.3f %5.3f %5.3f %5.3f" % \
(code, e[0], e[2], e[1], e[3])
else:
print >>rfd, "%3d %5.3f %5.3f %5.3f %5.3f" % (code,0,0,0,0)
return ogp, pwr_sinad
def fit_inl(fname='t.res'):
"""
Read the raw residuals from fname.res and compute the INL corrections
Assume that the residuals file in in core order ie. a,b,c,d.
"""
corrections = zeros((17,5), dtype='float')
wts = array([1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.,15,16,\
15.,14.,13.,12.,11.,10.,9.,8.,7.,6.,5.,4.,3.,2.,1.])
data = genfromtxt(fname, unpack=True)
start_data = int(data[0][0])
file_limit = len(data[0])
data_limit = start_data + file_limit
print start_data, data_limit
if data[0][data_limit - start_data - 1] != data_limit - 1:
print "there are holes in the data file"
return
for corr_level in range(17):
# a and b are positions in the file
a = corr_level*16 - 15 - start_data
b = a + 31
if a < 0:
a = 0
if a == 0 and start_data == 0:
a = 1
if b > file_limit:
b = file_limit
if b == file_limit and data_limit == 256:
b -= 1
if a > b:
continue
wt_a = a - corr_level*16 + 15 + start_data
wt_b = wt_a -a + b
wt = sum(wts[wt_a:wt_b])
av1 = sum(data[1][a:b]*wts[wt_a:wt_b])/wt
av2 = sum(data[2][a:b]*wts[wt_a:wt_b])/wt
av3 = sum(data[3][a:b]*wts[wt_a:wt_b])/wt
av4 = sum(data[4][a:b]*wts[wt_a:wt_b])/wt
print "%d %7.5f %7.5f %7.5f %7.5f" % (16*corr_level,av1,av2,av3,av4)
corrections[corr_level][0] = 16*corr_level
corrections[corr_level][1] = av1
corrections[corr_level][2] = av2
corrections[corr_level][3] = av3
corrections[corr_level][4] = av4
if fname[:4] == 'hist':
outname = 'hist_inl.meas'
else:
outname = 'inl.meas'
savetxt(outname, corrections, fmt=('%3d','%7.4f','%7.4f','%7.4f','%7.4f'))
def dosfdr(sig_freq, fname = 'psd'):
"""
Read the psd data from a file and calculate the SFDR and SINAD. Write the
results in a file named sfdr
"""
tot_pwr = 0.0
in_peak = False
spur_pwr = 0.0
for line in open(fname, 'r'):
f, d = line.split()
freq = float(f)
if abs(freq - sig_freq) < 4:
test = -70
else:
test = -90
db = float(d)
pwr = 10**(float(db)/10.)
tot_pwr += pwr
if in_peak:
if db < test:
in_peak = False
if abs(peak_freq - sig_freq) < 1:
sig_pwr = pwr_in_peak
sig_db = peak_db
peak_sig_freq = peak_freq
else:
if pwr_in_peak > spur_pwr:
spur_pwr = pwr_in_peak
spur_db = peak_db
spur_freq = peak_freq
else:
pwr_in_peak += 10**(float(db)/10.)
if db > peak_db:
peak_db = db
peak_freq = freq
elif db > test:
pwr_in_peak = 10**(float(db)/10.)
peak_freq = freq
peak_db = db
in_peak = True
outfd = open('sfdr', 'a')
sfdr = 10.0*math.log10(sig_pwr / spur_pwr)
sinad = 10.0*math.log10(sig_pwr/(tot_pwr - sig_pwr))
print >> outfd, "%8.3f %6.2f %6.2f %6.2f %7.2f" %\
(sig_freq, sig_db, sfdr, sinad, spur_freq)
# Start of code for histograms
def cumsin(p, codes):
amp = p[0]
arg=(codes-127.5+p[1])/amp
for i in range(size(arg)):
a = arg[i]
if a > 1.0:
arg[i] = 1.0
elif a < -1.0:
arg[i] = 0.0
else:
arg[i] = 1-arccos(a)/pi
return arg
# return array([(sign(a)+1)/2 if abs(a) > 1.0 else 1-arccos(a)/pi for a in arg])
def pltcumsin(p):
codes = array(range(0,256), dtype=float)
cum = cumsin(p, codes)
plot(codes,cum)
return cum
def cumgaussian(p, codes):
amp = p[0]
arg=(codes-127.5+p[1])/amp
return (1-erfc(arg)/2.0)
def pltcumgaussian(p):
codes = array(range(0,256), dtype=float)
cum = cumgaussian(p, codes)
plot(codes,cum)
return cum
def hist_residuals(p, codes, cumhist, fit_function):
return cumhist - fit_function(p, codes)
def fit_hist(core=1, type='sin', fname='hist_cores'):
global cumhist, hist, plsq, cumresid, extended_fit
coderesid=empty(256,dtype=float)
if type == "sin":
fit_function = cumsin
else:
fit_function = cumgaussian
codes = arange(0,256, dtype=float)
# get the data as a 6x256 array, ie. hist[0] == arange(256)
hist = genfromtxt(fname, dtype=float, unpack=True)
t=float(sum(hist[core]))
cumhist=cumsum(hist[core])/t
args = (codes[0:255], cumhist[0:255], fit_function)
plsq = leastsq(hist_residuals, [135,0], args)
extended_fit = empty(258, dtype=float)
cumresid = hist_residuals(plsq[0],codes, cumhist, fit_function)
extended_fit[1:257] = cumhist-cumresid
extended_fit[0] = 2 * extended_fit[1] - extended_fit[2]
extended_fit[257] = 2 * extended_fit[256] - extended_fit[255]
# invert the sign of cumresid so inl corrections will be correct
for i in range(256):
if(cumresid[i] > 0 and extended_fit[i+2] > extended_fit[i+1]):
coderesid[i] = -cumresid[i] / (extended_fit[i+2] - extended_fit[i+1])
elif(extended_fit[i+1] > extended_fit[i]):
coderesid[i] = -cumresid[i] / (extended_fit[i+1] - extended_fit[i])
else:
coderesid[i]=0
return plsq[0], coderesid