-
Notifications
You must be signed in to change notification settings - Fork 1
/
cifar_fs_dataloader.py
530 lines (454 loc) · 21.7 KB
/
cifar_fs_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Adapted from:
# https://github.com/kjunelee/MetaOptNet/blob/master/data/CIFAR_FS.py
from __future__ import print_function
import os
import os.path
import numpy as np
import random
import pickle
import json
import math
import torch
import torch.utils.data as data
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchnet as tnt
from PIL import Image
from PIL import ImageEnhance
from pdb import set_trace as breakpoint
# Set the appropriate paths of the datasets here.
_CIFAR_FS_DATASET_DIR = 'datasets/CIFAR_FS'
def buildLabelIndex(labels):
label2inds = {}
for idx, label in enumerate(labels):
if label not in label2inds:
label2inds[label] = []
label2inds[label].append(idx)
return label2inds
def load_data(file):
try:
with open(file, 'rb') as fo:
data = pickle.load(fo)
return data
except:
with open(file, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
data = u.load()
return data
def get_pickle_paths():
return dict(
file_train_categories_train_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle'),
file_train_categories_train_base_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base.pickle'),
file_train_categories_train_base2_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base2.pickle'),
file_train_categories_val_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle'),
file_train_categories_val_base_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base.pickle'),
file_train_categories_val_base2_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base2.pickle'),
file_train_categories_test_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle'),
file_val_categories_val_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_val.pickle'),
file_test_categories_test_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_test.pickle'),
)
class CIFAR_FS(data.Dataset):
@classmethod
def get_pickle_paths(cls):
return get_pickle_paths()
def __init__(self, phase='train', do_not_use_random_transf=False, force_use_random_transf=False, get_pickle_paths=None):
assert phase in ['train', 'train_base', 'train_base2', 'val', 'val_base', 'val_base2', 'test']
self.phase = phase
self.name = 'CIFAR_FS_' + phase
print('Loading CIFAR-FS dataset - phase {0}'.format(phase))
file_train_categories_train_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle')
file_train_categories_train_base_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base.pickle')
file_train_categories_train_base2_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base2.pickle')
file_train_categories_val_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle')
file_train_categories_val_base_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base.pickle')
file_train_categories_val_base2_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train_base2.pickle')
file_train_categories_test_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_train.pickle')
file_val_categories_val_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_val.pickle')
file_test_categories_test_phase = os.path.join(
_CIFAR_FS_DATASET_DIR,
'CIFAR_FS_test.pickle')
if get_pickle_paths is not None:
pickle_paths = get_pickle_paths()
file_train_categories_train_phase = pickle_paths['file_train_categories_train_phase']
file_train_categories_train_base_phase = pickle_paths['file_train_categories_train_base_phase']
file_train_categories_val_phase = pickle_paths['file_train_categories_val_phase']
file_train_categories_val_base_phase = pickle_paths['file_train_categories_val_base_phase']
file_train_categories_test_phase = pickle_paths['file_train_categories_test_phase']
file_val_categories_val_phase = pickle_paths['file_val_categories_val_phase']
file_test_categories_test_phase = pickle_paths['file_test_categories_test_phase']
self.use_precomputed_features = True
else:
self.use_precomputed_features = False
if self.phase.startswith('train'):
# During training phase we only load the training phase images
# of the training categories (aka base categories).
if self.phase == 'train':
data_train = load_data(file_train_categories_train_phase)
elif self.phase == 'train_base':
data_train = load_data(file_train_categories_train_base_phase)
elif self.phase == 'train_base2':
data_train = load_data(file_train_categories_train_base2_phase)
else:
assert False
self.data = data_train['data']
self.labels = data_train['labels']
self.label2ind = buildLabelIndex(self.labels)
self.labelIds = sorted(self.label2ind.keys())
self.num_cats = len(self.labelIds)
self.labelIds_base = self.labelIds
self.num_cats_base = len(self.labelIds_base)
elif self.phase.startswith('val') or self.phase == 'test':
if self.phase=='test':
# load data that will be used for evaluating the recognition
# accuracy of the base categories.
data_base = load_data(file_train_categories_test_phase)
# load data that will be use for evaluating the few-shot recogniton
# accuracy on the novel categories.
data_novel = load_data(file_test_categories_test_phase)
elif self.phase.startswith('val'):
# load data that will be used for evaluating the recognition
# accuracy of the base categories.
if self.phase=='val':
data_base = load_data(file_train_categories_val_phase)
elif self.phase=='val_base':
data_base = load_data(file_train_categories_val_base_phase)
elif self.phase=='val_base2':
data_base = load_data(file_train_categories_val_base2_phase)
else:
assert False
# load data that will be use for evaluating the few-shot recogniton
# accuracy on the novel categories.
data_novel = load_data(file_val_categories_val_phase)
else:
assert False
self.data = np.concatenate(
[data_base['data'], data_novel['data']], axis=0)
self.labels = data_base['labels'] + data_novel['labels']
self.label2ind = buildLabelIndex(self.labels)
self.labelIds = sorted(self.label2ind.keys())
self.num_cats = len(self.labelIds)
self.labelIds_base = buildLabelIndex(data_base['labels']).keys()
self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys()
self.num_cats_base = len(self.labelIds_base)
self.num_cats_novel = len(self.labelIds_novel)
intersection = set(self.labelIds_base) & set(self.labelIds_novel)
assert(len(intersection) == 0)
else:
raise ValueError('Not valid phase {0}'.format(self.phase))
mean_pix = [x/255.0 for x in [129.37731888, 124.10583864, 112.47758569]]
std_pix = [x/255.0 for x in [68.20947949, 65.43124043, 70.45866994]]
normalize = transforms.Normalize(mean=mean_pix, std=std_pix)
if (not force_use_random_transf) and ((self.phase=='test' or self.phase=='val' or self.phase.startswith('val_base')) or (do_not_use_random_transf==True)):
self.transform = transforms.Compose([
lambda x: np.asarray(x),
transforms.ToTensor(),
normalize
])
else:
self.transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
lambda x: np.asarray(x),
transforms.ToTensor(),
normalize
])
def __getitem__(self, index):
img, label = self.data[index], self.labels[index]
if self.use_precomputed_features:
img = torch.tensor(img)
else:
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.data)
class FewShotDataloader():
def __init__(self,
dataset,
nKnovel=5, # number of novel categories.
nKbase=-1, # number of base categories.
nExemplars=1, # number of training examples per novel category.
nTestNovel=15*5, # number of test examples for all the novel categories.
nTestBase=15*5, # number of test examples for all the base categories.
batch_size=1, # number of training episodes per batch.
num_workers=4,
epoch_size=2000, # number of batches per epoch.
):
self.dataset = dataset
self.phase = self.dataset.phase
max_possible_nKnovel = (self.dataset.num_cats_base if self.phase in ['train', 'train_base', 'train_base2']
else self.dataset.num_cats_novel)
assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel)
self.nKnovel = nKnovel
max_possible_nKbase = self.dataset.num_cats_base
nKbase = nKbase if nKbase >= 0 else max_possible_nKbase
if self.phase=='train' and nKbase > 0:
nKbase -= self.nKnovel
max_possible_nKbase -= self.nKnovel
assert(nKbase >= 0 and nKbase <= max_possible_nKbase)
self.nKbase = nKbase
self.nExemplars = nExemplars
self.nTestNovel = nTestNovel
self.nTestBase = nTestBase
self.batch_size = batch_size
self.epoch_size = epoch_size
self.num_workers = num_workers
self.is_eval_mode = (self.phase=='test') or (self.phase=='val') or (self.phase.startswith('val_base'))
def sampleImageIdsFrom(self, cat_id, sample_size=1):
"""
Samples `sample_size` number of unique image ids picked from the
category `cat_id` (i.e., self.dataset.label2ind[cat_id]).
Args:
cat_id: a scalar with the id of the category from which images will
be sampled.
sample_size: number of images that will be sampled.
Returns:
image_ids: a list of length `sample_size` with unique image ids.
"""
assert(cat_id in self.dataset.label2ind)
assert(len(self.dataset.label2ind[cat_id]) >= sample_size)
# Note: random.sample samples elements without replacement.
return random.sample(self.dataset.label2ind[cat_id], sample_size)
def sampleCategories(self, cat_set, sample_size=1):
"""
Samples `sample_size` number of unique categories picked from the
`cat_set` set of categories. `cat_set` can be either 'base' or 'novel'.
Args:
cat_set: string that specifies the set of categories from which
categories will be sampled.
sample_size: number of categories that will be sampled.
Returns:
cat_ids: a list of length `sample_size` with unique category ids.
"""
if cat_set=='base':
labelIds = self.dataset.labelIds_base
elif cat_set=='novel':
labelIds = self.dataset.labelIds_novel
else:
raise ValueError('Not recognized category set {}'.format(cat_set))
assert(len(labelIds) >= sample_size)
# return sample_size unique categories chosen from labelIds set of
# categories (that can be either self.labelIds_base or self.labelIds_novel)
# Note: random.sample samples elements without replacement.
return random.sample(labelIds, sample_size)
def sample_base_and_novel_categories(self, nKbase, nKnovel):
"""
Samples `nKbase` number of base categories and `nKnovel` number of novel
categories.
Args:
nKbase: number of base categories
nKnovel: number of novel categories
Returns:
Kbase: a list of length 'nKbase' with the ids of the sampled base
categories.
Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel
categories.
"""
if self.is_eval_mode:
assert(nKnovel <= self.dataset.num_cats_novel)
# sample from the set of base categories 'nKbase' number of base
# categories.
Kbase = sorted(self.sampleCategories('base', nKbase))
# sample from the set of novel categories 'nKnovel' number of novel
# categories.
Knovel = sorted(self.sampleCategories('novel', nKnovel))
else:
# sample from the set of base categories 'nKnovel' + 'nKbase' number
# of categories.
cats_ids = self.sampleCategories('base', nKnovel+nKbase)
assert(len(cats_ids) == (nKnovel+nKbase))
# Randomly pick 'nKnovel' number of fake novel categories and keep
# the rest as base categories.
random.shuffle(cats_ids)
Knovel = sorted(cats_ids[:nKnovel])
Kbase = sorted(cats_ids[nKnovel:])
return Kbase, Knovel
def sample_test_examples_for_base_categories(self, Kbase, nTestBase):
"""
Sample `nTestBase` number of images from the `Kbase` categories.
Args:
Kbase: a list of length `nKbase` with the ids of the categories from
where the images will be sampled.
nTestBase: the total number of images that will be sampled.
Returns:
Tbase: a list of length `nTestBase` with 2-element tuples. The 1st
element of each tuple is the image id that was sampled and the
2nd elemend is its category label (which is in the range
[0, len(Kbase)-1]).
"""
Tbase = []
if len(Kbase) > 0:
# Sample for each base category a number images such that the total
# number sampled images of all categories to be equal to `nTestBase`.
KbaseIndices = np.random.choice(
np.arange(len(Kbase)), size=nTestBase, replace=True)
KbaseIndices, NumImagesPerCategory = np.unique(
KbaseIndices, return_counts=True)
for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory):
imd_ids = self.sampleImageIdsFrom(
Kbase[Kbase_idx], sample_size=NumImages)
Tbase += [(img_id, Kbase_idx) for img_id in imd_ids]
assert(len(Tbase) == nTestBase)
return Tbase
def sample_train_and_test_examples_for_novel_categories(
self, Knovel, nTestNovel, nExemplars, nKbase):
"""Samples train and test examples of the novel categories.
Args:
Knovel: a list with the ids of the novel categories.
nTestNovel: the total number of test images that will be sampled
from all the novel categories.
nExemplars: the number of training examples per novel category that
will be sampled.
nKbase: the number of base categories. It is used as offset of the
category index of each sampled image.
Returns:
Tnovel: a list of length `nTestNovel` with 2-element tuples. The
1st element of each tuple is the image id that was sampled and
the 2nd element is its category label (which is in the range
[nKbase, nKbase + len(Knovel) - 1]).
Exemplars: a list of length len(Knovel) * nExemplars of 2-element
tuples. The 1st element of each tuple is the image id that was
sampled and the 2nd element is its category label (which is in
the ragne [nKbase, nKbase + len(Knovel) - 1]).
"""
if len(Knovel) == 0:
return [], []
nKnovel = len(Knovel)
Tnovel = []
Exemplars = []
assert((nTestNovel % nKnovel) == 0)
nEvalExamplesPerClass = int(nTestNovel / nKnovel)
for Knovel_idx in range(len(Knovel)):
imd_ids = self.sampleImageIdsFrom(
Knovel[Knovel_idx],
sample_size=(nEvalExamplesPerClass + nExemplars))
imds_tnovel = imd_ids[:nEvalExamplesPerClass]
imds_ememplars = imd_ids[nEvalExamplesPerClass:]
Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel]
Exemplars += [(img_id, nKbase+Knovel_idx) for img_id in imds_ememplars]
assert(len(Tnovel) == nTestNovel)
assert(len(Exemplars) == len(Knovel) * nExemplars)
random.shuffle(Exemplars)
return Tnovel, Exemplars
def sample_episode(self):
"""Samples a training episode."""
nKnovel = self.nKnovel
nKbase = self.nKbase
nTestNovel = self.nTestNovel
nTestBase = self.nTestBase
nExemplars = self.nExemplars
Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel)
Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase)
Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories(
Knovel, nTestNovel, nExemplars, nKbase)
# concatenate the base and novel category examples.
Test = Tbase + Tnovel
random.shuffle(Test)
Kall = Kbase + Knovel
return Exemplars, Test, Kall, nKbase
def createExamplesTensorData(self, examples):
"""
Creates the examples image and label tensor data.
Args:
examples: a list of 2-element tuples, each representing a
train or test example. The 1st element of each tuple
is the image id of the example and 2nd element is the
category label of the example, which is in the range
[0, nK - 1], where nK is the total number of categories
(both novel and base).
Returns:
images: a tensor of shape [nExamples, Height, Width, 3] with the
example images, where nExamples is the number of examples
(i.e., nExamples = len(examples)).
labels: a tensor of shape [nExamples] with the category label
of each example.
"""
images = torch.stack(
[self.dataset[img_idx][0] for img_idx, _ in examples], dim=0)
labels = torch.LongTensor([label for _, label in examples])
return images, labels
def get_iterator(self, epoch=0):
rand_seed = epoch
random.seed(rand_seed)
np.random.seed(rand_seed)
def load_function(iter_idx):
Exemplars, Test, Kall, nKbase = self.sample_episode()
Xt, Yt = self.createExamplesTensorData(Test)
Kall = torch.LongTensor(Kall)
if len(Exemplars) > 0:
Xe, Ye = self.createExamplesTensorData(Exemplars)
return Xe, Ye, Xt, Yt, Kall, nKbase
else:
return Xt, Yt, Kall, nKbase
tnt_dataset = tnt.dataset.ListDataset(
elem_list=range(self.epoch_size), load=load_function)
data_loader = tnt_dataset.parallel(
batch_size=self.batch_size,
num_workers=(0 if self.is_eval_mode else self.num_workers),
shuffle=(False if self.is_eval_mode else True))
return data_loader
def __call__(self, epoch=0):
return self.get_iterator(epoch)
def get_iterator_with_global_ids_and_labels(self, epoch=0):
rand_seed = epoch
random.seed(rand_seed)
np.random.seed(rand_seed)
def load_function(iter_idx):
Exemplars, Test, Kall, nKbase = self.sample_episode()
Xt, Yt = self.createExamplesTensorData(Test)
Kall = torch.LongTensor(Kall)
if len(Exemplars) > 0:
Xe, Ye = self.createExamplesTensorData(Exemplars)
return (Xe, Ye, torch.tensor([i for i, _ in Exemplars]), torch.tensor([self.dataset.labels[i] for i, _ in Exemplars]),
Xt, Yt, torch.tensor([i for i, _ in Test]), torch.tensor([self.dataset.labels[i] for i, _ in Test]), Kall, nKbase)
else:
return Xt, Yt, torch.tensor([i for i, _ in Test]), torch.tensor([self.dataset.labels[i] for i, _ in Test]), Kall, nKbase
tnt_dataset = tnt.dataset.ListDataset(
elem_list=range(self.epoch_size), load=load_function)
data_loader = tnt_dataset.parallel(
batch_size=self.batch_size,
num_workers=(0 if self.is_eval_mode else self.num_workers),
shuffle=(False if self.is_eval_mode else True))
return data_loader
def __len__(self):
return int(self.epoch_size / self.batch_size)