-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_gan.py
125 lines (109 loc) · 4 KB
/
run_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import click
import os
import attr
import cattr
import json
import itertools
import numpy as np
from joblib import Parallel, delayed
import presetml.generation.util
from presetml.generation import gan
from presetml import constants, datatypes
@click.command()
@click.option("--num-epochs", default=100)
@click.option("--batch-size", default=25)
@click.option("--search", is_flag=True)
@click.option("--cgan", is_flag=True)
@click.option("--config-file", default=None)
@click.option("--training-presets-path", default=constants.ANALOG_PRESETS_PATH)
@click.option("--generated-presets-dest", default=constants.GENERATED_PRESETS_DIR)
def main(
num_epochs,
batch_size,
search,
cgan,
config_file,
training_presets_path,
generated_presets_dest,
):
labels = constants.CGAN_LABELS if cgan else None
if search:
# runs preconfigured hyperparameter search
if cgan:
raise Exception("CGAN must be configured in search code")
dataset = load_data(training_presets_path, batch_size)
run_search(dataset, generated_presets_dest)
elif config_file:
with open(config_file, "r") as f:
config = json.loads(f.read())
labels = config.get("cgan_labels")
dataset = load_data(training_presets_path, batch_size, labels)
config["num_epochs"] = num_epochs
config["batch_size"] = batch_size
config = cattr.structure(config, datatypes.GANConfig)
gan.run(dataset, generated_presets_dest, config)
else:
config = datatypes.GANConfig(
batch_size=batch_size, num_epochs=num_epochs, cgan_labels=labels
)
dataset = load_data(training_presets_path, batch_size, labels)
gan.run(dataset, generated_presets_dest, config)
def load_data(training_presets_path, batch_size, labels=None):
vectors, labels = presetml.generation.util.load_real_samples(
training_presets_path, labels
)
print(f"Loaded {len(vectors)} samples. Shape: {vectors.shape}")
if batch_size > vectors.shape[0]:
print("Batch size must be less than len of dataset")
return vectors, labels
def run_search(dataset: np.array, dest_preset_path: str):
search = {
"num_epochs": [500],
"batch_size": [25],
"discriminator_update_multiplier": range(2, 5),
"discriminator_parameters": {
"learning_rate": [0.0001, 0.00005, 0.00001],
"hidden_layers": range(2, 10, 2),
"layer_size": range(100, 1000, 200),
"dropout": [0.4],
"relu_alpha": [0.2],
},
"generator_parameters": {
"learning_rate": [0.0001, 0.00005, 0.00001],
"latent_dim": range(100, 300, 100),
"hidden_layers": range(2, 10, 2),
"layer_size": range(100, 1000, 200),
"dropout": [0.4],
"relu_alpha": [0.2],
},
}
search = [
cattr.structure(config, datatypes.GANConfig)
for config in generate_config_combinations(search)
]
Parallel(n_jobs=4)(
delayed(run_indiv_search)(search[i], i, len(search), dest_preset_path, dataset)
for i in range(len(search))
)
def run_indiv_search(config, i, total, dest_preset_path, dataset):
global verbose
verbose = False
print(f" ------ Config {i}/{total} ------ ")
iteration_dir = os.path.join(dest_preset_path, f"config_{i}")
os.makedirs(iteration_dir)
config_info = os.path.join(iteration_dir, "hyperparameter_config.json")
with open(config_info, "w") as f:
f.write(json.dumps(attr.asdict(config)))
gan.run(dataset, iteration_dir, config)
def generate_config_combinations(search_dict):
return [
dict(zip(search_dict.keys(), value))
for value in itertools.product(*_flatten_search_dict(search_dict))
]
def _flatten_search_dict(search_dict):
return [
generate_config_combinations(val) if isinstance(val, dict) else val
for val in search_dict.values()
]
if __name__ == "__main__":
main()