-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_hybrid_cnn.py
340 lines (237 loc) · 12.5 KB
/
train_hybrid_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import os
os.chdir("data/custom_cough/")
import argparse
import pandas as pd
import torch.nn as nn
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
import warnings
warnings.filterwarnings("ignore")
import logging
import datetime
from datetime import datetime, timedelta
from typing import List
from utils.custom_hybrid_2d_3d_cnn import *
from utils.helper_functions import *
from sklearn.model_selection import KFold
import json
with open("config.json") as json_data_file:
config = json.load(json_data_file)
LABELS = [config["labels"]["TRAIN_LABEL"], config["labels"]["TEST_LABEL"]]
PATHS = [config["paths"]["TRAIN_TOPO_3D"], config["paths"]["TRAIN_PATH"], config["paths"]["TEST_TOPO_3D"], config["paths"]["TEST_PATH"]]
class MultiInputData(Dataset):
def __init__(self, topo_path, melspec_path, annotations_file):
self.topo_path = topo_path
self.melspec_path = melspec_path
self.annotations = pd.read_csv(annotations_file)
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
topo_3d, mel_spec = self._get_topo_path(idx), self._get_spectro_path(idx)
label = self._get_audio_sample_label(idx)
topo = torch.tensor(torch.load(topo_3d)).unsqueeze_(0)
mel = torch.tensor(torch.load(mel_spec)).unsqueeze_(0)
return topo.float(), mel.float(), label
def _get_spectro_path(self, idx):
path = os.path.join(self.melspec_path, self.annotations.iloc[idx, 2])
return path
def _get_topo_path(self, idx):
path = os.path.join(self.topo_path, self.annotations.iloc[idx, 2])
return path
def _get_audio_sample_label(self, idx):
return self.annotations.iloc[idx, 1]
def reset_weights(m):
'''
Try resetting model weights to avoid
weight leakage.
'''
for layer in m.children():
if hasattr(layer, 'reset_parameters'):
print(f'Reset trainable parameters of layer = {layer}')
layer.reset_parameters()
def training_grounds(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: str = "cuda") -> torch.Tensor:
model.train()
train_loss, train_acc = 0, 0
all_preds, all_targets = [], []
for batch, (input3d, input2d, target) in enumerate(dataloader):
input3d, input2d, target = input3d.to(device), input2d.to(device), target.to(device)
target = target.float()
prediction = model(input3d, input2d)
prediction = prediction.squeeze(dim=1)
loss = loss_fn(prediction, target)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
pred_class = (torch.sigmoid(prediction) > 0.5).float()
all_preds.extend(pred_class.cpu().numpy())
all_targets.extend(target.cpu().numpy())
train_acc += (pred_class == target).sum().item() / len(prediction)
precision = precision_score(all_targets, all_preds)
recall = recall_score(all_targets, all_preds)
f1 = f1_score(all_targets, all_preds)
train_loss = train_loss / len(dataloader)
train_acc = train_acc / len(dataloader)
return train_loss, train_acc, precision, recall, f1
def testing_grounds(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
device: str = "cuda",
mc_dropout: bool = False,
mc_runs: int = 5) -> torch.Tensor:
if mc_dropout:
model.train() # Need to put it in training mode for inference because of gradients
else:
model.eval()
test_loss, test_acc = 0, 0
all_preds, all_targets = [], []
with torch.inference_mode():
for batch, (input3d, input2d, target) in enumerate(dataloader):
input3d, input2d, target = input3d.to(device), input2d.to(device), target.to(device)
target = target.float()
if mc_dropout:
mc_outputs = [model(input3d, input2d).squeeze(dim=1) for _ in range(mc_runs)]
test_preds = torch.mean(torch.stack(mc_outputs), dim=0)
else:
test_preds = model(input3d, input2d)
test_preds = test_preds.squeeze(dim=1)
loss = loss_fn(test_preds, target)
test_loss += loss.item()
test_pred_class = (torch.sigmoid(test_preds) > 0.5).float()
all_preds.extend(test_pred_class.cpu().numpy())
all_targets.extend(target.cpu().numpy())
test_acc += (test_pred_class == target).sum().item() / len(test_preds)
precision = precision_score(all_targets, all_preds)
recall = recall_score(all_targets, all_preds)
f1 = f1_score(all_targets, all_preds)
test_loss = test_loss / len(dataloader)
test_acc = test_acc / len(dataloader)
return test_loss, test_acc, precision, recall, f1
def train_pipeline(model: torch.nn.Module,
train_dataloader: torch.utils.data.DataLoader,
test_dataloader: torch.utils.data.DataLoader,
# val_dataloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module = nn.BCELoss(),
epochs: int = 1,
device: str = "cuda"):
results = {"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": [],
"train_prec": [],
"train_rec": [],
"train_f1": [],
"test_prec": [],
"test_rec": [],
"test_f1": []}
for epoch in range(epochs):
train_loss, train_acc, train_prec, train_rec, train_f1 = training_grounds(model=model,
dataloader=train_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
device=device
)
scheduler.step()
test_loss, test_acc, test_prec, test_rec, test_f1 = testing_grounds(model=model,
dataloader=test_dataloader,
loss_fn=loss_fn,
device=device
)
# val_loss, val_acc = validation_grounds(model=model,
# dataloader=val_dataloader,
# loss_fn=loss_fn,
# device=device)
print(f"Epoch: {epoch} | Train loss: {train_loss:.4f} | Train acc: {train_acc:.4f} | Test loss: {test_loss:.4f} | Test acc: {test_acc:.4f} | Test precision {test_prec:.4f} | Test recall {test_rec:.4f} | Test F1: {test_f1:.4f}")
results["train_loss"].append(train_loss)
results["train_acc"].append(train_acc)
results["test_loss"].append(test_loss)
results["test_acc"].append(test_acc)
results["train_prec"].append(train_prec)
results["train_rec"].append(train_rec)
results["train_f1"].append(train_f1)
results["test_prec"].append(test_prec)
results["test_rec"].append(test_rec)
results["test_f1"].append(test_f1)
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='---------------- Train a 2D CNN with topological signals with Takens embeddings input. Made for Imagimob case study by Jako Rostami.')
parser.add_argument('-epochs', '--epochs', type=int, default=1, help='Number of epochs to train. Defaults to 1.')
parser.add_argument('-batchsize', '--batchsize', type=int, default=16, help='Number of batches to pass. Defaults to 16.')
parser.add_argument("-montecarlo", "--montecarlo", type=bool, default=False, help="Use Monte Carlo dropout or not. Defaults to False.")
parser.add_argument("-mc_runs", "--mc_runs", type=int, default=5, help="Number of Monte Carlo runs. Defaults to 5.")
parser.add_argument("-mc_dropout", "--mc_dropout", type=float, )
args = parser.parse_args()
EPOCHS = args.epochs
BATCH_SIZE = args.batchsize
# Instantiate the training and testing datafetching
# gg = Gatherer(batch_size=BATCH_SIZE)
train_loader, test_loader = MultiInputData(PATHS[0], PATHS[1], LABELS[0]), MultiInputData(PATHS[2], PATHS[3], LABELS[1])
loss_fn = nn.BCEWithLogitsLoss()
# For fold results
results = {}
dataset = ConcatDataset([train_loader, test_loader])
kfold = KFold(n_splits=5, shuffle=True)
mc_dropout = True
for fold, (train_ids, test_ids) in enumerate(kfold.split(dataset)):
print(f"Fold: {fold}")
print("---"*10)
fold_str = "fold_" + str(fold)
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
trainloader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=train_subsampler)
testloader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=test_subsampler)
# Instantiate the Conv model into GPU and initialize weights
hybrid_cnn = HybridCNN().to("cuda")
hybrid_cnn.apply(reset_weights)
initialize_weights(hybrid_cnn)
loss_fn = nn.BCEWithLogitsLoss()
optim = torch.optim.Adam(hybrid_cnn.parameters(), lr=0.01, weight_decay=1e-5)
# optim = torch.optim.SGD(cnn.parameters(), lr=0.01, momentum=0.9)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.9)
for epoch in range(0, EPOCHS):
print(f"Epoch {epoch+1}/{EPOCHS}")
train_loss, train_acc, train_prec, train_rec, train_f1 = training_grounds(hybrid_cnn, trainloader, loss_fn, optim)
print(f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, Train Precision: {train_prec:.4f}, Train Recall: {train_rec:.4f}, Train F1: {train_f1:.4f}")
results[epoch] = {
"train_loss": train_loss,
"train_acc": train_acc,
"train_precision": train_prec,
"train_recall": train_rec,
"train_f1": train_f1
}
test_loss, test_acc, test_prec, test_rec, test_f1 = testing_grounds(hybrid_cnn, testloader, loss_fn, mc_dropout=mc_dropout)
print(f"Train loss: {train_loss:.4f} | Train acc: {train_acc:.4f} | Test loss: {test_loss:.4f} | Test acc: {test_acc:.4f} | Test precision {test_prec:.4f} | Test recall {test_rec:.4f} | Test F1: {test_f1:.4f}")
results[fold] = {
"train_loss": train_loss,
"train_acc": train_acc,
"train_precision": train_prec,
"train_recall": train_rec,
"train_f1": train_f1,
"test_loss": test_loss,
"test_acc": test_acc,
"test_precision": test_prec,
"test_recall": test_rec,
"test_f1": test_f1
}
print("---"*10)
print("Training and testing finished. Proceeding to save model.")
date_tracker = datetime.today().strftime("%Y-%m-%d-%H_%M")
model_dir = "C:/Users/jako/data/custom_cough/models"
# model_name = "noisy_2DCNN_TOPO" + "_epochs=" + str(EPOCHS) + \
# "_test-acc=" + str(round(results["test_acc"][-1], 2)) + \
# "_batch=" + str(BATCH_SIZE) + \
# "_" + date_tracker + ".pth"
# results_name = "noisy_2DCNN_TOPO" + "_epochs=" + str(EPOCHS) + \
# "_test-acc=" + str(round(results["test_acc"][-1], 2)) + \
# "_batch=" + str(BATCH_SIZE) + \
# "_" + date_tracker + ".csv"
# pd.DataFrame(results).to_csv(os.path.join("C:/Users/jako/data/custom_cough/models", results_name), index=True) # Index will act as the number of epochs
pd.DataFrame(results).T.to_csv(os.path.join("C:/Users/jako/data/custom_cough/models", "testing_kfold.csv"))
# torch.save(cnn.state_dict(), os.path.join(model_dir, model_name))
print("Model saved as: {}".format("BAJS.pth"))
print("Session finished.")