-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_topoCNN_kfold.py
210 lines (146 loc) · 7.8 KB
/
train_topoCNN_kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
os.chdir("data/custom_cough/")
import argparse
import pandas as pd
import torch.nn as nn
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset
import warnings
warnings.filterwarnings("ignore")
import logging
import datetime
from datetime import datetime, timedelta
from typing import List
from utils.custom_topological_cnn import *
from utils.custom_dataloader import *
from utils.helper_functions import *
from sklearn.model_selection import KFold
import json
with open("config.json") as json_data_file:
config = json.load(json_data_file)
LABELS = [config["labels"]["TRAIN_LABEL"], config["labels"]["TEST_LABEL"]]
PATHS = [config["paths"]["TRAIN_TOPO"], config["paths"]["TEST_TOPO"]]
# trainload = CoughData(TRAIN_PATH, TRAIN_LBL)
# testload = CoughData(TEST_PATH, TEST_LBL)
# trainer = DataLoader(trainload, batch_size=BATCH_SIZE)
# tester = DataLoader(testload, batch_size=BATCH_SIZE)
class Gatherer:
def __init__(self,
batch_size: int,
torch_dataloader: torch.utils.data.DataLoader = DataLoader,
dataset: torch.utils.data.Dataset = CoughData,
datapaths: List[str] = PATHS,
datalabels: List[str] = LABELS,
log_dir: str = "./logs/"):
self.dtformat = datetime.now().strftime("%Y-%m-%d")
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.DEBUG)
# Create log directory if it doesn't exist
if not os.path.exists(log_dir):
os.makedirs(log_dir)
report_name = log_dir + "logging_report_" + datetime.now().strftime("%Y-%m-%d_%H_%M_%S") + ".log"
handler = logging.FileHandler(report_name)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(funcName)s - %(message)s")
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.batch_size=BATCH_SIZE
self.dataset = dataset
self.torch_dataloader = torch_dataloader
self.datapaths = datapaths
self.datalabels = datalabels
def initiatie_data(self):
self.logger.info("Using batch size: {}".format(self.batch_size))
self.logger.info("Instantiating training dataset")
self.trainload = self.dataset(self.datapaths[0],
self.datalabels[0])
self.logger.info("Finished train. Instantiating testing dataset.")
self.testload = self.dataset(self.datapaths[1],
self.datalabels[1])
self.logger.info("Training and testing loaders finished.\
Now instantiating training and testing dataloaders")
self.trainer, self.tester = self.torch_dataloader(self.trainload, batch_size=self.batch_size, shuffle=True), self.torch_dataloader(self.testload, batch_size=self.batch_size, shuffle=False)
self.logger.info("Finished dataloaders.")
return self.trainer, self.tester
def reset_weights(m):
'''
Try resetting model weights to avoid
weight leakage.
'''
for layer in m.children():
if hasattr(layer, 'reset_parameters'):
print(f'Reset trainable parameters of layer = {layer}')
layer.reset_parameters()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='---------------- Train a 2D CNN with topological signals with Takens embeddings input. Made for Imagimob case study by Jako Rostami.')
parser.add_argument('-epochs', '--epochs', type=int, default=1, help='Number of epochs to train. Defaults to 1.')
parser.add_argument('-batchsize', '--batchsize', type=int, default=16, help='Number of batches to pass. Defaults to 16.')
parser.add_argument("-montecarlo", "--montecarlo", type=bool, default=False, help="Use Monte Carlo dropout or not. Defaults to False.")
parser.add_argument("-mc_runs", "--mc_runs", type=int, default=5, help="Number of Monte Carlo runs. Defaults to 5.")
parser.add_argument("-mc_dropout", "--mc_dropout", type=float, )
args = parser.parse_args()
EPOCHS = args.epochs
BATCH_SIZE = args.batchsize
# Instantiate the training and testing datafetching
gg = Gatherer(batch_size=BATCH_SIZE)
train_loader, test_loader = CoughData(PATHS[0], LABELS[0]), CoughData(PATHS[1], LABELS[1])
loss_fn = nn.BCEWithLogitsLoss()
# For fold results
results = {}
dataset = ConcatDataset([train_loader, test_loader])
kfold = KFold(n_splits=5, shuffle=True)
mc_dropout = True
for fold, (train_ids, test_ids) in enumerate(kfold.split(dataset)):
print(f"Fold: {fold}")
print("---"*10)
fold_str = "fold_" + str(fold)
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
trainloader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=train_subsampler)
testloader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=test_subsampler)
# Instantiate the Conv model into GPU and initialize weights
cnn = SingleCNN2DTopo(mc_dropout=mc_dropout).to("cuda")
cnn.apply(reset_weights)
initialize_weights(cnn)
optim = torch.optim.Adam(cnn.parameters(), lr=0.001) # Classical optimizer
for epoch in range(0, EPOCHS):
print(f"Epoch {epoch+1}/{EPOCHS}")
train_loss, train_acc, train_prec, train_rec, train_f1 = training_grounds(cnn, trainloader, loss_fn, optim)
print(f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, Train Precision: {train_prec:.4f}, Train Recall: {train_rec:.4f}, Train F1: {train_f1:.4f}")
results[epoch] = {
"train_loss": train_loss,
"train_acc": train_acc,
"train_precision": train_prec,
"train_recall": train_rec,
"train_f1": train_f1
}
test_loss, test_acc, test_prec, test_rec, test_f1 = testing_grounds(cnn, testloader, loss_fn, mc_dropout=mc_dropout)
print(f"Train loss: {train_loss:.4f} | Train acc: {train_acc:.4f} | Test loss: {test_loss:.4f} | Test acc: {test_acc:.4f} | Test precision {test_prec:.4f} | Test recall {test_rec:.4f} | Test F1: {test_f1:.4f}")
results[fold] = {
"train_loss": train_loss,
"train_acc": train_acc,
"train_precision": train_prec,
"train_recall": train_rec,
"train_f1": train_f1,
"test_loss": test_loss,
"test_acc": test_acc,
"test_precision": test_prec,
"test_recall": test_rec,
"test_f1": test_f1
}
print("---"*10)
print("Training and testing finished. Proceeding to save model.")
date_tracker = datetime.today().strftime("%Y-%m-%d-%H_%M")
model_dir = "C:/Users/jako/data/custom_cough/models"
# model_name = "noisy_2DCNN_TOPO" + "_epochs=" + str(EPOCHS) + \
# "_test-acc=" + str(round(results["test_acc"][-1], 2)) + \
# "_batch=" + str(BATCH_SIZE) + \
# "_" + date_tracker + ".pth"
# results_name = "noisy_2DCNN_TOPO" + "_epochs=" + str(EPOCHS) + \
# "_test-acc=" + str(round(results["test_acc"][-1], 2)) + \
# "_batch=" + str(BATCH_SIZE) + \
# "_" + date_tracker + ".csv"
# pd.DataFrame(results).to_csv(os.path.join("C:/Users/jako/data/custom_cough/models", results_name), index=True) # Index will act as the number of epochs
pd.DataFrame(results).T.to_csv(os.path.join("C:/Users/jako/data/custom_cough/models", "testing_kfold.csv"))
# torch.save(cnn.state_dict(), os.path.join(model_dir, model_name))
print("Model saved as: {}".format("BAJS.pth"))
print("Session finished.")