-
Notifications
You must be signed in to change notification settings - Fork 2
/
style_transfer_neptune.py
256 lines (205 loc) · 9.02 KB
/
style_transfer_neptune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import print_function
import os
import time
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
from keras.preprocessing.image import load_img, img_to_array
from keras.applications import vgg16
from keras import backend as K
from matplotlib import pylab as plt
from PIL import Image
from deepsense import neptune
# these are the weights of the different loss components
total_variation_weight = 1.
style_weight = 1.
content_weight = 0.025
def set_total_variation_weight(value):
global total_variation_weight
total_variation_weight = float(value)
return str(total_variation_weight)
def set_style_weight(value):
global style_weight
style_weight = float(value)
return str(style_weight)
def set_content_weight(value):
global content_weight
content_weight = float(value)
return str(content_weight)
def restart_style_transfer(value):
run_style_transfer()
return str(value)
ctx = neptune.Context()
logging_channel = ctx.job.create_channel(
name='logging_channel',
channel_type=neptune.ChannelType.TEXT)
loss_channel = ctx.job.create_channel(
name='training loss',
channel_type=neptune.ChannelType.NUMERIC)
result_channel = ctx.job.create_channel(
name='result image',
channel_type=neptune.ChannelType.IMAGE)
ctx.job.register_action(name='total', handler = set_total_variation_weight)
ctx.job.register_action(name='style', handler = set_style_weight)
ctx.job.register_action(name='content', handler = set_content_weight)
ctx.job.register_action(name='restart', handler = restart_style_transfer)
ctx.job.tags.append('h5py')
ctx.job.finalize_preparation()
base_image_path = (ctx.params.base_file)
style_reference_image_path = (ctx.params.style_file)
results_images_path = (ctx.params.output_folder)
nr_iter = (ctx.params.nr_iter)
# dimensions of the generated picture.
img_nrows = 200
img_ncols = 200
assert img_ncols == img_nrows, 'Due to the use of the Gram matrix, width and height must match.'
# util function to open, resize and format pictures into appropriate tensors
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_nrows, img_ncols))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg16.preprocess_input(img)
return img
# util function to convert a tensor into a valid image
def deprocess_image(x):
x = x.reshape((img_nrows, img_ncols, 3))
# Remove zero-center by mean pixel
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
# 'BGR'->'RGB'
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
def stylish_neptune_image(raw_image):
stylish_image = Image.fromarray(raw_image)
return neptune.Image(
name="Kuba in GDG style",
description="style transfered image",
data=stylish_image)
def run_style_transfer():
# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))
# this will contain our generated image
combination_image = K.placeholder((1, img_nrows, img_ncols, 3))
# combine the 3 images into a single Keras tensor
input_tensor = K.concatenate([base_image,
style_reference_image,
combination_image], axis=0)
logging_channel.send(x = time.time(),y = " Reading model VGG16...")
# build the VGG16 network with our 3 images as input
# the model will be loaded with pre-trained ImageNet weights
model = vgg16.VGG16(input_tensor=input_tensor,
weights='imagenet', include_top=False)
logging_channel.send(x = time.time(),y = "Building Objects...")
# get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
# compute the neural style loss
# first we need to define 4 util functions
# the gram matrix of an image tensor (feature-wise outer product)
def gram_matrix(x):
assert K.ndim(x) == 3
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram
# the "style loss" is designed to maintain
# the style of the reference image in the generated image.
# It is based on the gram matrices (which capture style) of
# feature maps from the style reference image
# and from the generated image
def style_loss(style, combination):
assert K.ndim(style) == 3
assert K.ndim(combination) == 3
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_nrows * img_ncols
return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image
def content_loss(base, combination):
return K.sum(K.square(combination - base))
# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent
def total_variation_loss(x):
assert K.ndim(x) == 4
a = K.square(x[:, :img_nrows-1, :img_ncols-1, :] - x[:, 1:, :img_ncols-1, :])
b = K.square(x[:, :img_nrows-1, :img_ncols-1, :] - x[:, :img_nrows-1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# combine these loss functions into a single scalar
loss = K.variable(0.)
layer_features = outputs_dict['block4_conv2']
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(base_image_features,
combination_features)
feature_layers = ['block1_conv1', 'block2_conv1',
'block3_conv1', 'block4_conv1',
'block5_conv1']
for layer_name in feature_layers:
layer_features = outputs_dict[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[2, :, :, :]
sl = style_loss(style_reference_features, combination_features)
loss += (style_weight / len(feature_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)
# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)
outputs = [loss]
if type(grads) in {list, tuple}:
outputs += grads
else:
outputs.append(grads)
f_outputs = K.function([combination_image], outputs)
def eval_loss_and_grads(x):
x = x.reshape((1, img_nrows, img_ncols, 3))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
logging_channel.send(x = time.time(),y = "Resuming Style Transfer")
evaluator = Evaluator()
# run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss
x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.
for i in range(nr_iter):
logging_channel.send(x = time.time(),y = 'Iteration: %s'%i)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
fprime=evaluator.grads, maxfun=20)
logging_channel.send(x = time.time(),y = 'Current loss value: %s'%min_val)
loss_channel.send(x = i,y = float(min_val))
# save current generated image
img = deprocess_image(x.copy())
plt.imsave(os.path.join(results_images_path,"style_transfer_%s.jpg"%i),img)
result_channel.send(x = time.time(),y = stylish_neptune_image(img))
end_time = time.time()
logging_channel.send(x = time.time(),y = 'Iteration %d completed in %ds' % (i, end_time - start_time))
if __name__ == "__main__":
run_style_transfer()