-
Notifications
You must be signed in to change notification settings - Fork 4
/
model.py
510 lines (425 loc) · 22.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
from networks.load_generator import load_generator
from networks.genforce.utils.visualizer import postprocess_image as postprocess
from networks.biggan import one_hot_from_names, truncated_noise_sample
from networks.stylegan3.load_stylegan3 import make_transform
from matplotlib import pyplot as plt
from utils import plot_masks, plot_colours, mapRange
import torch
import numpy as np
from PIL import Image
import tensorly as tl
tl.set_backend('pytorch')
class Model():
def __init__(self, model_name, t=0, layer=5, trunc_psi=1.0, trunc_layers=18, device='cuda', biggan_classes=['fox']):
"""
Instantiate the model for decomposition and/or local image editing.
Parameters
----------
model_name : string
Name of architecture and dataset--one of the items in ./networks/genforce/models/model_zoo.py.
t : int
Random seed for the generator (to generate a sample image).
layer : int
Intermediate layer at which to perform the decomposition.
trunc_psi : float
Truncation value in [0, 1].
trunc_layers : int
Number of layers at which to apply truncation.
device : string
Device to store the tensors on.
biggan_classes : list
List of strings specifying imagenet classes of interest (e.g. ['alp', 'breakwater']).
"""
self.gan_type = model_name.split('_')[0]
self.model_name = model_name
self.randomize_noise = False
self.device = device
self.biggan_classes = biggan_classes
self.layer = layer # layer to decompose
self.start = 0 if 'stylegan2' in self.gan_type else 2
self.trunc_psi = trunc_psi
self.trunc_layers = trunc_layers
self.generator = load_generator(model_name, device)
noise = torch.Tensor(np.random.randn(1, self.generator.z_space_dim)).to(self.device)
z, image = self.sample(noise, layer=layer, trunc_psi=trunc_psi, trunc_layers=trunc_layers, verbose=True)
self.c = z.shape[1]
self.s = z.shape[2]
self.image = image
def HOSVD(self, batch_size=10, n_iters=100):
"""
Initialises the appearance basis A. In particular, computes the left-singular vectors of the channel mode's scatter matrix.
Note: total samples used is batch_size * n_iters
Parameters
----------
batch_size : int
Number of activations to sample in a single go.
n_iters : int
Number of times to sample `batch_size`-many activations.
"""
np.random.seed(0)
torch.manual_seed(0)
with torch.no_grad():
Z = torch.zeros((batch_size * n_iters, self.c, self.s, self.s), device=self.device)
# note: perform in loops to have a larger effective batch size
print('Starting loops...')
for i in range(n_iters):
np.random.seed(i)
torch.manual_seed(i)
noise = torch.Tensor(np.random.randn(batch_size, self.generator.z_space_dim)).to(self.device)
z, _ = self.sample(noise, layer=self.layer, partial=True)
Z[(batch_size * i):(batch_size * (i + 1))] = z
Z = Z.view([-1, self.c, self.s**2])
print(f'Generated {batch_size * n_iters} gan samples...')
scat = 0
for _, x in enumerate(Z):
# mode-3 unfolding in the paper, but in PyTorch channel mode is first.
m_unfold = tl.unfold(x, 0)
scat += m_unfold @ m_unfold.T
self.Uc_init, _, _ = np.linalg.svd((scat / len(Z)).cpu().numpy())
self.Uc_init = torch.Tensor(self.Uc_init).to(self.device)
print('... HOSVD done')
def decompose(self, ranks=[512, 8], lr=1e-8, batch_size=1, its=10000, log_modulo=1000, hosvd_init=True, stochastic=True, n_iters=1, verbose=True):
"""
Performs the decomposition in the paper. In particular, Algorithm 1.,
either with a non-fixed batch of samples (stochastic=True), or descends the full gradients.
Parameters
----------
ranks : list
List of integers specifying the R_C and R_S, the ranks--i.e. number of parts and appearances respectively.
lr : float
Learning rate the projected gradient descent.
batch_size : int
Number of samples in each batch.
its : int
Total number of iterations.
log_modulo : int
Parameter used to control how often "training" information is displayed.
hosvd_init : bool
Initialise appearance factors from HOSVD? (else from random normal).
stochastic : bool
Sample the batch again each iteration? Else descent full gradients
n_iters : int
Number of `batch_size`-many samples to take (for full gradient).
The total activations are sampled in batches in a loop to enable it to fit in memory.
verbose : bool
Prints extra information.
"""
self.ranks = ranks
np.random.seed(0)
torch.manual_seed(0)
#######################
# init from HOSVD, else random normal
Uc = self.Uc_init[:, :ranks[0]].detach().clone().to(self.device) if hosvd_init else torch.randn(self.Uc_init.shape[0], ranks[0]).detach().clone().to(self.device) * 0.01
Us = torch.Tensor(np.random.uniform(0, 0.01, size=[self.s**2, ranks[1]])).to(self.device)
#######################
print(f'Uc shape: {Uc.shape}, Us shape: {Us.shape}')
with torch.no_grad():
zeros = torch.zeros_like(Us, device=self.device)
Us = torch.maximum(Us, zeros)
# use a fixed batch (i.e. descend the full gradient)
if not stochastic:
Z = torch.zeros((batch_size * n_iters, self.c, self.s, self.s), device=self.device)
# note: perform in loops to have a larger effective batch size
print(f'Starting loops, total Z shape: {Z.shape}...')
for i in range(n_iters):
np.random.seed(i)
torch.manual_seed(i)
noise = torch.Tensor(np.random.randn(batch_size, self.generator.z_space_dim)).to(self.device)
z, _ = self.sample(noise, layer=self.layer, partial=True)
Z[(batch_size * i):(batch_size * (i + 1))] = z
for t in range(its):
np.random.seed(t)
torch.manual_seed(t)
# resample the batch, if stochastic
if stochastic:
noise = torch.Tensor(np.random.randn(batch_size, self.generator.z_space_dim)).to(self.device)
Z, _ = self.sample(noise, layer=self.layer, partial=True)
if verbose:
# reconstruct (for visualisation)
coords = tl.tenalg.multi_mode_dot(Z.view(-1, self.c, self.s**2).float(), [Uc.T, Us.T], transpose=False, modes=[1, 2])
Z_rec = tl.tenalg.multi_mode_dot(coords, [Uc, Us], transpose=False, modes=[1, 2])
self.rec_loss = torch.mean(torch.norm(Z.view(-1, self.c, self.s**2).float() - Z_rec, p='fro', dim=[1, 2]) ** 2)
# Update S
z = Z.view(-1, self.c, self.s**2).float()
Us_g = -4 * (torch.transpose(z,1,2)@Uc@Uc.T@z@Us) + \
2 * (Us@Us.T@torch.transpose(z,1,2)@Uc@Uc.T@Uc@Uc.T@z@Us + torch.transpose(z,1,2)@Uc@Uc.T@Uc@Uc.T@z@Us@Us.T@Us)
Us_g = torch.sum(Us_g, 0)
Us = Us - lr * Us_g
# --- projection step ---a
Us = torch.maximum(Us, zeros)
# Update C
Uc_g = -4 * (z@Us@Us.T@torch.transpose(z,1,2)@Uc) + \
2 * (Uc@Uc.T@z@Us@Us.T@Us@Us.T@torch.transpose(z,1,2)@Uc + z@Us@Us.T@Us@Us.T@torch.transpose(z,1,2)@Uc@Uc.T@Uc)
Uc_g = torch.sum(Uc_g, 0)
Uc = Uc - lr * Uc_g
self.Us = Us
self.Uc = Uc
if t % log_modulo == 0 and verbose:
print(f'ITERATION: {t}')
z, x = self.sample(noise, layer=self.layer, partial=False)
# here we display the learnt parts factors and also overlay them over the images to visualise.
plot_masks(Us.T, r=min(ranks[-1], 32), s=self.s)
plt.show()
plot_colours(x, Us.T, r=ranks[-1], s=self.s, seed=-1)
plt.show()
def decompose_autograd(self, ranks=[512, 8], lr=1e-8, batch_size=1, its=10000, log_modulo=1000, verbose=True, hosvd_init=True):
"""
Performs the same decomposition in the paper, only uses autograd with Adam optimizer (and projected gradient descent).
Parameters
----------
ranks : list
List of integers specifying the R_C and R_S, the ranks--i.e. number of parts and appearances respectively.
lr : float
Learning rate the projected gradient descent.
batch_size : int
Number of samples in each batch.
its : int
Total number of iterations.
log_modulo : int
Parameter used to control how often "training" information is displayed.
hosvd_init : bool
Initialise appearance factors from HOSVD? (else from random normal).
verbose : bool
Prints extra information.
"""
self.ranks = ranks
np.random.seed(0)
torch.manual_seed(0)
#######################
# init from HOSVD, else random normal
Uc = torch.nn.Parameter(self.Uc_init[:, :ranks[0]].detach().clone().to(self.device), requires_grad=True) \
if hosvd_init else torch.nn.Parameter(torch.randn(self.Uc_init.shape[0], ranks[0]).detach().clone().to(self.device) * 0.01)
Us = torch.nn.Parameter(torch.Tensor(np.random.uniform(0, 0.01, size=[self.s**2, ranks[1]])).to(self.device), requires_grad=True)
#######################
optimizerS = torch.optim.Adam([Us], lr=lr)
optimizerC = torch.optim.Adam([Uc], lr=lr)
print(f'Uc shape: {Uc.shape}, Us shape: {Us.shape}')
zeros = torch.zeros_like(Us, device=self.device)
for t in range(its):
np.random.seed(t)
torch.manual_seed(t)
noise = torch.Tensor(np.random.randn(batch_size, self.generator.z_space_dim)).to(self.device)
Z, _ = self.sample(noise, layer=self.layer, partial=True)
# Update S
# reconstruct
coords = tl.tenalg.multi_mode_dot(Z.view(-1, self.c, self.s**2).float(), [Uc.T, Us.T], transpose=False, modes=[1, 2])
Z_rec = tl.tenalg.multi_mode_dot(coords, [Uc, Us], transpose=False, modes=[1, 2])
rec_loss = torch.mean(torch.norm(Z.view(-1, self.c, self.s**2).float() - Z_rec, p='fro', dim=[1, 2]) ** 2)
rec_loss.backward(retain_graph=True)
optimizerS.step()
# --- projection step ---
Us.data = torch.maximum(Us.data, zeros)
optimizerS.zero_grad()
optimizerC.zero_grad()
# Update C
# reconstruct with updated Us
coords = tl.tenalg.multi_mode_dot(Z.view(-1, self.c, self.s**2).float(), [Uc.T, Us.T], transpose=False, modes=[1, 2])
Z_rec = tl.tenalg.multi_mode_dot(coords, [Uc, Us], transpose=False, modes=[1, 2])
rec_loss = torch.mean(torch.norm(Z.view(-1, self.c, self.s**2).float() - Z_rec, p='fro', dim=[1, 2]) ** 2)
rec_loss.backward()
optimizerC.step()
optimizerS.zero_grad()
optimizerC.zero_grad()
self.Us = Us
self.Uc = Uc
with torch.no_grad():
if t % log_modulo == 0 and verbose:
print(f'Iteration {t} -- rec {rec_loss}')
noise = torch.Tensor(np.random.randn(batch_size, self.generator.z_space_dim)).to(self.device)
Z, x = self.sample(noise, layer=self.layer, partial=False)
plot_masks(Us.T, r=min(ranks[-1], 32), s=self.s)
plt.show()
plot_colours(x, Us.T, r=ranks[-1], s=self.s, seed=-1)
plt.show()
def refine(self, Z, image, lr=1e-8, its=1000, log_modulo=250, verbose=True):
"""
Performs the "refinement" step described in the paper, for a given sample Z.
Parameters
----------
Z : torch.Tensor
Intermediate activations for target refinement.
image : np.array
Corresponding image for Z (purely for visualisation purposes).
lr : float
Learning rate the projected gradient descent.
its : int
Total number of iterations.
log_modulo : int
Parameter used to control how often "training" information is displayed.
verbose : bool
Prints extra information.
Returns
-------
UsR : torch.Tensor
The refined factors \tilde{P}_i.
"""
np.random.seed(0)
torch.manual_seed(0)
#######################
# init from global spatial factors
UsR = self.Us.clone()
Uc = self.Uc
#######################
zeros = torch.zeros_like(self.Us, device=self.device)
for t in range(its):
with torch.no_grad():
z = Z.view(-1, self.c, self.s**2).float()
# descend refinement term's gradient
UsR_g = -4 * (torch.transpose(z,1,2)@Uc@Uc.T@z@UsR) + \
2 * (UsR@UsR.T@torch.transpose(z,1,2)@Uc@Uc.T@Uc@Uc.T@z@UsR + torch.transpose(z,1,2)@Uc@Uc.T@Uc@Uc.T@z@UsR@UsR.T@UsR)
UsR_g = torch.sum(UsR_g, 0)
# Update S
UsR = UsR - lr * UsR_g
# PGD step
UsR = torch.maximum(UsR, zeros)
if ((t + 1) % log_modulo == 0 and verbose):
print(f'iteration {t}')
plot_masks(UsR.T, s=self.s, r=min(self.ranks[-1], 16))
plt.show()
plot_colours(image, UsR.T, s=self.s, r=self.ranks[-1], seed=-1, alpha=0.9)
plt.show()
return UsR
def edit_at_layer(self, part, appearance, lam, t, Uc, Us, noise=None, b_idx=0):
"""
Performs the "refinement" step described in the paper, for a given sample Z.
Parameters
----------
part : list
List of ints containing the part(s) (column of Us) at which to edit.
appearance : list
List of ints containing the appearance (column of Uc) to apply at the corresponding part(s).
lam : list
List of ints containing the magnitude for each edit.
t : int
Random seed to edit
Uc : np.array
Learnt appearance factors
Us : np.array
Learnt parts factors
noise : np.array
If specified, the target latent code itself to edit (i.e. instead of providing than a random seed number).
b_idx : int
Index of biggan categories to use.
Returns
-------
Z : torch.Tensor
The intermediate activation at layer self.L
image : np.array
The original image for sample `t` or from latent code `noise`.
image2 : np.array
The edited image.
part : np.array
The part used to edit.
"""
with torch.no_grad():
if noise is None:
np.random.seed(t)
torch.manual_seed(t)
noise = torch.Tensor(np.random.randn(1, self.generator.z_space_dim)).to(self.device)
else:
np.random.seed(0)
torch.manual_seed(0)
direc = 0
for i in range(len(appearance)):
a = Uc[:, appearance[i]]
p = torch.sum(Us[:, part[i]], dim=-1).reshape([self.s, self.s])
p = mapRange(p, torch.min(p), torch.max(p), 0.0, 1.0)
# here, we basically form a rank-1 "tensor", to add to the target sample's activations.
# intuitively, the non-zero spatial positions of the part are filled with the appearance vector.
direc += lam[i] * tl.tenalg.outer([a, p])
if self.gan_type in ['stylegan', 'stylegan2']:
noise = self.generator.mapping(noise)['w']
noise_trunc = self.generator.truncation(noise, trunc_psi=self.trunc_psi, trunc_layers=self.trunc_layers)
Z = self.generator.synthesis(noise_trunc, start=self.start, stop=self.layer)['x']
x = self.generator.synthesis(noise_trunc, x=Z, start=self.layer)['image']
x_prime = self.generator.synthesis(noise_trunc, x=Z + direc, start=self.layer)['image']
elif 'pggan' in self.gan_type:
Z = self.generator(noise, start=self.start, stop=self.layer)['x']
x = self.generator(Z, start=self.layer)['image']
x_prime = self.generator(Z + direc, start=self.layer)['image']
elif 'biggan' in self.gan_type:
print(f'Choosing a {self.biggan_classes[b_idx]}')
class_vector = torch.tensor(one_hot_from_names([self.biggan_classes[b_idx]]), device=self.device)
noise_vector = torch.tensor(truncated_noise_sample(truncation=self.trunc_psi, batch_size=1, seed=t), device=self.device)
result = self.generator(noise_vector, class_vector, self.trunc_psi, stop=self.layer)
Z, cond_vector = result['z'], result['cond_vector']
x = self.generator(Z, class_vector, self.trunc_psi, cond_vector=cond_vector, start=self.layer)['z']
x_prime = self.generator(Z + direc, class_vector, self.trunc_psi, cond_vector=cond_vector, start=self.layer)['z']
elif 'stylegan3' in self.gan_type:
label = torch.zeros([1, 0], device=self.device)
Z = self.generator(noise, label, stop=self.layer, truncation_psi=self.trunc_psi, noise_mode='const')
x = self.generator(noise, label, x=Z, start=self.layer, stop=None, truncation_psi=self.trunc_psi, noise_mode='const')
x_prime = self.generator(noise, label, x=Z + direc, start=self.layer, stop=None, truncation_psi=self.trunc_psi, noise_mode='const')
image = np.array(Image.fromarray(postprocess(x.cpu().numpy())[0]).resize((256, 256)))
image2 = np.array(Image.fromarray(postprocess(x_prime.cpu().numpy())[0]).resize((256, 256)))
part = np.array(Image.fromarray(p.detach().cpu().numpy() * 255).convert('RGB').resize((256, 256), Image.NEAREST))
return Z, image, image2, part
def sample(self, noise, layer=5, partial=False, trunc_psi=1.0, trunc_layers=18, verbose=False):
"""
Samples intermediate feature maps and resulting image the desired generator.
Parameters
----------
noise : np.array
(batch_size, z_dim)-dim random standard gaussian noise.
layer : int
Intermediate layer at which to return intermediate features.
partial : bool
Perform full forward pass, and return image too? or just intermediate activations at layer number `layer`?
trunc_psi : float
Truncation value in [0, 1].
trunc_layers : int
Number of layers at which to apply truncation.
biggan_classes : list
List of strings specifying imagenet classes of interest (e.g. ['alp', 'breakwater']).
verbose : bool
Print out additional information?
Returns
-------
Z : torch.Tensor
The intermediate activations of shape [C, H, W].
image : np.array
Output RGB image.
"""
with torch.no_grad():
if self.gan_type in ['stylegan', 'stylegan2']:
noise = self.generator.mapping(noise)['w']
noise_trunc = self.generator.truncation(noise, trunc_psi=trunc_psi, trunc_layers=trunc_layers)
Z = self.generator.synthesis(noise_trunc, start=self.start, stop=layer)['x']
if not partial:
x = self.generator.synthesis(noise_trunc, x=Z, start=layer)['image']
elif 'pggan' in self.gan_type:
Z = self.generator(noise, start=self.start, stop=layer)['x']
if not partial:
x = self.generator(Z, start=layer)['image']
elif 'biggan' in self.gan_type:
if verbose:
print(f'Using BigGAN class names: {", ".join(self.biggan_classes)}')
class_vector = torch.tensor(one_hot_from_names(list(np.random.choice(self.biggan_classes, noise.shape[0])), batch_size=noise.shape[0]), device=self.device)
noise_vector = torch.tensor(truncated_noise_sample(truncation=self.trunc_psi, batch_size=noise.shape[0]), device=self.device)
result = self.generator(noise_vector, class_vector, self.trunc_psi, stop=layer)
Z = result['z']
cond_vector = result['cond_vector']
if not partial:
x = self.generator(Z, class_vector, self.trunc_psi, cond_vector=cond_vector, start=layer)['z']
elif 'stylegan3' in self.gan_type:
label = torch.zeros([noise.shape[0], 0], device=self.device)
if hasattr(self.generator.synthesis, 'input'):
m = np.linalg.inv(make_transform((0,0), 0))
self.generator.synthesis.input.transform.copy_(torch.from_numpy(m))
Z = self.generator(noise, label, x=None, start=0, stop=layer, truncation_psi=trunc_psi, noise_mode='const')
if not partial:
x = self.generator(noise, label, x=Z, start=layer, stop=None, truncation_psi=trunc_psi, noise_mode='const')
if verbose:
print(f'-- Partial Z shape at layer {layer}: {Z.shape}')
if partial:
return Z, None
else:
image = postprocess(x.detach().cpu().numpy())
image = np.array(Image.fromarray(image[0]).resize((256, 256)))
return Z, image
def save(self):
Uc_path = f'./checkpoints/Uc-name_{self.model_name}-layer_{self.layer}-rank_{self.ranks[0]}.npy'
Us_path = f'./checkpoints/Us-name_{self.model_name}-layer_{self.layer}-rank_{self.ranks[1]}.npy'
np.save(Us_path, self.Us.detach().cpu().numpy())
np.save(Uc_path, self.Uc.detach().cpu().numpy())
print(f'Saved factors to {Us_path}, {Uc_path}')