-
Notifications
You must be signed in to change notification settings - Fork 23
/
supervised_finetuning.py
292 lines (243 loc) · 10.2 KB
/
supervised_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import argparse
from tqdm import tqdm
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
LlamaTokenizer,
TrainingArguments,
logging,
set_seed
)
from trl import SFTTrainer
from trl.trainer import ConstantLengthDataset
from utils.merge import merge_llm_with_lora
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str, default="")
parser.add_argument("--dataset_name", type=str, default="./data/alpaca_gpt4_data.json")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--size_valid_set", type=int, default=4000)
parser.add_argument("--streaming", action="store_true", default=False)
parser.add_argument("--shuffle_buffer", type=int, default=5000)
parser.add_argument("--seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=10000)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--eos_token_id", type=int, default=49152)
parser.add_argument("--lora_r", type=int, default=16)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str, default=None)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler_type", type=str, default="linear")
parser.add_argument("--num_warmup_steps", type=int, default=100)
parser.add_argument("--weight_decay", type=float, default=0.05)
parser.add_argument("--warmup_ratio", type=float, default=0.)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--no_bf16", action="store_false", default=True)
parser.add_argument("--no_gradient_checkpointing", action="store_false", default=True)
parser.add_argument("--seed", type=int, default=1103)
parser.add_argument("--num_workers", type=int, default=None)
parser.add_argument("--output_dir", type=str, default="./checkpoints/supervised_llama/")
parser.add_argument("--log_freq", type=int, default=1)
parser.add_argument("--eval_freq", type=int, default=1000)
parser.add_argument("--save_freq", type=int, default=1000)
parser.add_argument("--save_total_limit", type=int, default=3)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--run_name", type=str, default="llama-supervised-finetuned")
parser.add_argument("--merge_lora", action="store_true", default=False)
return parser.parse_args()
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def prepare_sample_text(data_point):
"""Prepare the text from a sample of the dataset."""
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
def create_datasets(tokenizer, args):
data_path = args.dataset_name
data_kwargs = {
"split": args.split,
"num_proc": args.num_workers if not args.streaming else None,
"streaming": args.streaming,
}
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
dataset = load_dataset("json", data_files=data_path, **data_kwargs)
else:
dataset = load_dataset(data_path, **data_kwargs)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
else:
dataset = dataset.train_test_split(test_size=0.1, seed=args.seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")
chars_per_token = chars_token_ratio(train_data, tokenizer)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
formatting_func=prepare_sample_text,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
formatting_func=prepare_sample_text,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
return train_dataset, valid_dataset
def run_training(args, train_data, val_data, tokenizer=None):
print("Loading the model")
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=args.lora_target_modules,
bias="none",
task_type="CAUSAL_LM",
)
train_data.start_iteration = 0
print("Starting main loop")
training_args = TrainingArguments(
output_dir=args.output_dir,
dataloader_drop_last=True,
evaluation_strategy="steps",
max_steps=args.max_steps,
eval_steps=args.eval_freq,
save_steps=args.save_freq,
logging_steps=args.log_freq,
save_total_limit=args.save_total_limit,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.no_gradient_checkpointing,
fp16=args.fp16,
bf16=args.no_bf16,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
run_name=args.run_name,
report_to="wandb",
ddp_find_unused_parameters=False if int(os.environ.get("WORLD_SIZE", 1)) != 1 else None,
)
model = AutoModelForCausalLM.from_pretrained(
args.base_model,
load_in_8bit=True,
device_map={"": Accelerator().local_process_index},
)
if args.resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
args.resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
args.resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
args.resume_from_checkpoint = None
if os.path.exists(checkpoint_name):
import torch
from peft import (
get_peft_model,
prepare_model_for_int8_training,
set_peft_model_state_dict
)
print(f"Restarting from {checkpoint_name}")
model = prepare_model_for_int8_training(model)
model = get_peft_model(model, lora_config)
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data,
peft_config=lora_config,
max_seq_length=args.seq_length,
packing=True,
)
print_trainable_parameters(model)
print("Training...")
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
print("Saving last checkpoint of the model")
final_model_path = os.path.join(args.output_dir, "final_checkpoint/")
trainer.model.save_pretrained(final_model_path)
if args.merge_lora:
merge_llm_with_lora(args.base_model, final_model_path, args.output_dir)
def main(args):
if "decapoda" in args.base_model.lower():
tokenizer = LlamaTokenizer.from_pretrained(args.base_model)
tokenizer.add_special_tokens(
{
"eos_token": "</s>",
"bos_token": "</s>",
"unk_token": "</s>",
"pad_token": "</s>",
}
)
else:
tokenizer = AutoTokenizer.from_pretrained(args.base_model, use_fast=False)
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
train_dataset, eval_dataset = create_datasets(tokenizer, args)
run_training(args, train_dataset, eval_dataset, tokenizer)
if __name__ == "__main__":
args = get_args()
assert args.base_model != "", "Please provide the llama model path"
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_error()
main(args)