-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathplot.py
78 lines (66 loc) · 2.54 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import logging
import numpy as np
from cluster import *
from sklearn import manifold
from sklearn import __version__ as sklearn_version
from plot_utils import *
def versiontuple(v):
'''
Format the version string to tuple of int type
Argss:
v : __version__ string
'''
return tuple(map(int, (v.split("."))))
def plot_rho_delta(rho, delta):
'''
Plot scatter diagram for rho-delta points
Args:
rho : rho list
delta : delta list
'''
logger.info("PLOT: rho-delta plot")
plot_scatter_diagram(
0, rho[1:], delta[1:], x_label='rho', y_label='delta', title='rho-delta')
def plot_cluster(cluster):
'''
Plot scatter diagram for final points that using multi-dimensional scaling for data
Args:
cluster : DensityPeakCluster object
'''
logger.info("PLOT: cluster result, start multi-dimensional scaling")
dp = np.zeros((cluster.max_id, cluster.max_id), dtype=np.float32)
cls = []
for i in xrange(1, cluster.max_id):
for j in xrange(i + 1, cluster.max_id + 1):
dp[i - 1, j - 1] = cluster.distances[(i, j)]
dp[j - 1, i - 1] = cluster.distances[(i, j)]
cls.append(cluster.cluster[i])
cls.append(cluster.cluster[cluster.max_id])
cls = np.array(cls, dtype=np.float32)
fo = open(r'./tmp.txt', 'w')
fo.write('\n'.join(map(str, cls)))
fo.close()
version = versiontuple(sklearn_version)[1] > 14
if version[0] > 0 or version[1] > 14:
mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1,
dissimilarity='precomputed')
else:
mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1)
dp_mds = mds.fit_transform(dp)
logger.info("PLOT: end mds, start plot")
plot_scatter_diagram(1, dp_mds[:, 0], dp_mds[
:, 1], title='cluster', style_list=cls)
if __name__ == '__main__':
logging.basicConfig(
format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
dpcluster = DensityPeakCluster()
# dpcluster.local_density(load_paperdata, './example_distances.dat')
# plot_rho_delta(rho, delta) #plot to choose the threthold
rho, delta, nneigh = dpcluster.cluster(
load_paperdata, './data/data_in_paper/example_distances.dat', 20, 0.1)
logger.info(str(len(dpcluster.ccenter)) + ' center as below')
for idx, center in dpcluster.ccenter.items():
logger.info('%d %f %f' % (idx, rho[center], delta[center]))
plot_cluster(dpcluster)