-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
153 lines (94 loc) · 4.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import sys
import pandas as pd
import numpy as np
import tensorflow as tf
from models import ConvNet_Models
from models import RecurNet_Models
from models import Feed_Forward
from train import Trainer
parser = argparse.ArgumentParser()
# Positional Arguments
parser.add_argument("DATASET_PATH", help="Path to Dataset File (.CSV)", type=str)
parser.add_argument("MODEL", help="Neural Network Model to Train", type=str)
models = ['feed_forward', 'multi_column_cnn', 'simple_rnn', 'bidirectional_rnn', 'vote_multi_column_cnn']
# Optional Arguments
parser.add_argument("--save_model", help="Where to save trained model? Default='model/model.ckpt'", type=str, default='model/model.ckpt')
parser.add_argument("--epochs", help="How many Epochs to train for? Default=10", type=int, default=10)
parser.add_argument("--batch_size", help="What will be the batch Size? Default=128", type=int, default=128)
parser.add_argument("--learning_rate", help="What will be the Learning rate? Default = 0.001", type=float, default=0.001)
parser.add_argument("--feed_forward_architecture", help="If training Feed Forward Network, what will be the Architecture? Specify Number of neurons in each hidden layer EX: [500,500,500]", default="[500,500,500]")
args = parser.parse_args()
if not args.DATASET_PATH or not (args.DATASET_PATH.endswith(".csv")):
print("No Dataset To Train or Invalid Dataset File!")
print("'python3 main.py -h' for help")
sys.exit()
if not args.MODEL or not(args.MODEL in models):
print("Invalid Model to Train")
print("USAGE:", models)
sys.exit()
dataset_path = args.DATASET_PATH
model_to_train = args.MODEL
path_to_save_model = args.save_model
total_epochs = args.epochs
batch_size = args.batch_size
learning_rate = args.learning_rate
architecture = args.feed_forward_architecture
def read_data(dataset_path):
data = pd.read_csv(dataset_path)
data = data.values
values = list(data[:,0])
labels = []
for val in values:
one_hot = np.zeros(10)
one_hot[val] += 1
labels.append(np.asarray(one_hot, np.float32))
images = []
for val in data:
images.append(np.asarray(val[1:], np.float32))
return images, labels
images, labels = read_data(dataset_path)
if model_to_train in ["multi_column_cnn", "vote_multi_column_cnn"]:
img_w = 28
img_h = 28
no_classes = 10
channels = 1
x = tf.placeholder("float", [None, img_w, img_h, channels])
y = tf.placeholder("float", [None, no_classes])
if model_to_train == "multi_column_cnn":
model_to_train = ConvNet_Models.Multi_Column_DeepNet()
else:
model_to_train = ConvNet_Models.Vote_Multi_Column_DeepNet()
size = [-1, img_h, img_w, channels]
elif model_to_train in ['simple_rnn', 'bidirectional_rnn']:
hidden_features = 512
no_classes = 10
timesteps = 28
input_size = 28
x = tf.placeholder("float", [None, timesteps, input_size])
y = tf.placeholder("float", [None, no_classes])
if model_to_train == "simple_rnn":
model_to_train = RecurNet_Models.Simple_RNN(hidden_features=hidden_features, no_classes=no_classes,
timesteps=timesteps)
else:
model_to_train = RecurNet_Models.Bidirectional_RNN(hidden_features=hidden_features, no_classes=no_classes,
timesteps=timesteps)
size = [-1, timesteps, input_size]
elif model_to_train == "feed_forward":
architecture = architecture.replace("[", '')
architecture = architecture.replace("]", '')
architecture = architecture.split(',')
input_size = 784
no_classes = 10
architecture = [int(x) for x in architecture]
architecture = [784] + architecture + [10]
size = [-1, input_size]
x = tf.placeholder("float", [None, input_size])
y = tf.placeholder("float", [None, no_classes])
model_to_train = Feed_Forward.Feed_Forward(architecture)
images = np.reshape(images, size)
trainer = Trainer(x, y)
trainer.train_network(x, dataset=[images, labels], model=model_to_train.model,
learning_rate=learning_rate, save_model_path=path_to_save_model,
total_epochs=total_epochs, batch_size=batch_size)
#