-
Notifications
You must be signed in to change notification settings - Fork 333
/
load_images.py
52 lines (37 loc) · 1.49 KB
/
load_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import cPickle
import numpy as np
def unpickle(file_name):
fo = open(file_name, 'rb')
image_dict = cPickle.load(fo)
fo.close()
return image_dict
# Each column contains grayscale value for the image
# Squash data to [0.1, 0.9]
def normalize_data(images):
# Subtract mean of each image from its individual values
mean = images.mean(axis=0)
images = images - mean
# Truncate to +/- 3 standard deviations and scale to -1 and +1
pstd = 3 * images.std()
images = np.maximum(np.minimum(images, pstd), -pstd) / pstd
# Rescale from [-1,+1] to [0.1,0.9]
images = (1 + images) * 0.4 + 0.1
return images
# Convert RGB values to monochrome
def monochrome(r, g, b):
return (0.2125 * r) + (0.7154 * g) + (0.0721 * b)
# Returns 10000 gray scale images for training from CIFAR-10 data
def load_images():
image_size = 32
num_images = 10000
image_file = 'data/cifar10/data_batch_1'
# Load Images & select first num_images images
image_dict = unpickle(image_file)
image_data = image_dict['data'][0:num_images]
# Convert to grayscale & normalize
red_data = image_data[:, 0:image_size * image_size]
green_data = image_data[:, image_size * image_size:2 * image_size * image_size]
blue_data = image_data[:, 2 * image_size * image_size:3 * image_size * image_size]
grayscale_data = monochrome(red_data, green_data, blue_data)
grayscale_data = normalize_data(grayscale_data.transpose())
return normalize_data(grayscale_data)