-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
460 lines (394 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os,random,copy
import shutil
import torch
import argparse
import tensorboard_logger as tb_logger
import logging
import torch.distributed as dist
import utils
import data
import engine
from vocab import deserialize_vocab
# Hyper Parameters setting
def parser_options():
parser = argparse.ArgumentParser()
# training path setting
parser.add_argument('-e', '--experiment_name', default='test', type=str, help="the file name of ckpt save")
parser.add_argument('-m', '--model_name', default='SWAN', type=str, help="Model Name")
parser.add_argument('--data_name', default='rsitmd', type=str, help="Dataset Name.(eg.rsitmd or rsicd)")
parser.add_argument('--data_path', default='./data/', type=str, help=" Preprocessed data file path")
parser.add_argument('--image_path', default='../rs_data/', type=str, help="remote images data path")
parser.add_argument('--vocab_path', default='./vocab/', type=str, help="vocab data path")
parser.add_argument('--resnet_ckpt', default='./layers/aid_28-rsp-resnet-50-ckpt.pth', type=str,
help="restnet pre model path.eg.(aid_28-rsp-resnet-50-ckpt.pth / resnet50-19c8e357.pth)")
parser.add_argument('--resume', default=False, type=str,help="the pre-trained model path")
parser.add_argument('--fix_data', default=False, action='store_true', help='Whether stratified sampling is used')
parser.add_argument('--step_sample', default=False, action='store_true', help='Whether stratified sampling is used')
parser.add_argument('--epochs', default=100, type=int, help="the epochs of train")
parser.add_argument('--eval_step', default=1, type=int, help="the epochs of eval")
parser.add_argument('--test_step', default=0, type=int, help="the epochs of test")
parser.add_argument('--batch_size', default=100, type=int, help="Batch train size")
parser.add_argument('--batch_size_val', default=100, type=int, help="Batch val size")
parser.add_argument('--shard_size', default=256, type=int, help="Batch shard size")
parser.add_argument('--workers', default=3, type=int, help="the worker num of dataloader")
parser.add_argument('-kf', '--k_fold_nums', default=1, type=int, help="the total num of k_flod")
parser.add_argument('--k_fold_current_num', default=0, type=int, help="current num of k_fold")
# Model parameter setting
parser.add_argument('--embed_dim', default=512, type=int, help="the embedding's dim")
parser.add_argument('--margin', default=0.2, type=float)
parser.add_argument('--max_violation', default=False, action='store_true')
parser.add_argument('--grad_clip', default=0.0, type=float)
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--il_measure', default=False, help='Similarity measure used (cosine|l1|l2|msd)')
# RNN/GRU model parameter
parser.add_argument('--word_dim', default=300, type=int,
help='Dimensionality of the word embedding.(e.g. 300, 512)')
parser.add_argument('--use_bidirectional_rnn', default=True, type=str)
parser.add_argument('--is_finetune', default=False, type=str, help='Finetune resnet or not')
parser.add_argument('--num_layers', default=1, type=int, help='Number of GRU layers.')
# GPU setting
parser.add_argument('-g', '--gpuid', default=2, type=int, help="which gpu to use")
parser.add_argument('--distributed', default=False, action='store_true', help='Whether to use parallel computing')
parser.add_argument('--init_method', default='tcp://localhost:18888', help="init-method")
parser.add_argument('--rank', default=0, type=int, help='rank of current process')
parser.add_argument('--world_size', default=2, type=int, help="world size")
parser.add_argument('--use_mix_precision', default=False, action='store_true',
help="whether to use mix precision")
# no set setting
parser.add_argument('--logger_name', default='logs/', type=str, help="the path of logs")
parser.add_argument('-p', '--ckpt_save_path', default='checkpoint_fix_data/', type=str,
help="the path of checkpoint save")
parser.add_argument('--print_freq', default=10, type=int, help="Print result frequency")
parser.add_argument('--lr', default=0.0002, type=float, help="learning rate")
parser.add_argument('--lr_update_epoch', default=20, type=int, help="the update epoch of learning rate")
parser.add_argument('--lr_decay_param', default=0.7, type=float, help="the decay_param of learning rate")
# SWAN 对比实验调参变量
parser.add_argument('--sk_1', default=2, type=int)
parser.add_argument('--sk_2', default=3, type=int)
# SCAN 超参
parser.add_argument('--cross_attn', default="t2i", help='t2i|i2t')
parser.add_argument('--agg_func', default="LogSumExp", help='LogSumExp|Mean|Max|Sum')
parser.add_argument('--lambda_lse', default=6., type=float, help='LogSumExp temp.')
parser.add_argument('--lambda_softmax', default=9., type=float, help='Attention softmax temperature.')
parser.add_argument('--raw_feature_norm', default="softmax",
help='clipped_l2norm|l2norm|clipped_l1norm|l1norm|no_norm|softmax')
args = parser.parse_args()
# generate dataset path
args.data_path = args.data_path + args.data_name + '_precomp/'
args.image_path = args.image_path + args.data_name + '/images/'
args.vocab_path = args.vocab_path + args.data_name + '_splits_vocab.json'
# print hyperparameters
print('-------------------------')
print('# Hyper Parameters setting')
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
print('-------------------------')
print('')
return args
def main(args):
# create random seed
utils.setup_seed(args.seed)
# init_process_group
if args.distributed:
# tcp model
dist.init_process_group(backend='nccl', init_method=args.init_method,
rank=args.rank, world_size=args.world_size)
# choose model
if args.model_name == "SWAN":
from layers import SWAN as models
else:
raise NotImplementedError
# remove last train_info txt
path_train_info = args.ckpt_save_path + args.model_name + "_" + args.data_name + ".txt"
if os.path.exists(path_train_info):
os.remove(path_train_info)
# make ckpt save dir
if not os.path.exists(args.ckpt_save_path) and args.rank == 0:
os.makedirs(args.ckpt_save_path)
# print & save args
utils.log_to_txt(contexts='# Hyper Parameters setting', filename=path_train_info)
utils.log_to_txt(contexts=args.__dict__, filename=path_train_info)
utils.log_to_txt(contexts='-------------------------', filename=path_train_info)
utils.log_to_txt(contexts='', filename=path_train_info)
# make vocab
vocab = deserialize_vocab(args.vocab_path)
# Create dataset, model, criterion and optimizer
train_loader, val_loader = data.get_loaders(args, vocab)
if args.test_step:
test_loader = data.get_test_loader(args, vocab)
print("len of train_loader is {}, len of val_loader is {}".format(len(train_loader), len(val_loader)))
model = models.factory(args,
vocab.word2idx,
cuda=True,
data_parallel=args.distributed)
# print & save model info
if args.rank == 0:
path_model_info = args.ckpt_save_path + args.model_name + "_info.txt"
if os.path.exists(path_model_info):
os.remove(path_model_info)
log = open(path_model_info,mode="a",encoding="utf-8")
print("Total Params: ", sum(p.numel() for p in model.parameters()))
print("Total Requires_grad Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
print("Total Params: ", sum(p.numel() for p in model.parameters()), file=log)
print("Total Requires_grad Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad), file=log)
print("========================================================", file=log)
print(model, file=log)
print("========================================================", file=log)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
# optionally resume from a checkpoint
start_epoch = 0
best_rsum = 0
best_rsum_ = 0
best_score = ""
best_score_ = ""
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:{}'.format(args.gpuid))
start_epoch = checkpoint['epoch']
best_rsum = checkpoint['best_rsum']
model.load_state_dict(checkpoint['model'], strict =False)
# Eiters is used to show logs as the continuation of another
# training
model.Eiters = checkpoint['Eiters']
print("=> loaded checkpoint '{}' (epoch {}, best_rsum {})"
.format(args.resume, start_epoch, best_rsum))
rsum, all_scores = engine.validate(args, val_loader, model)
print(all_scores)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Train the Model
for epoch in range(start_epoch, args.epochs):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
utils.adjust_learning_rate(args, optimizer, epoch)
# # test validate
# engine.validate(args, val_loader, model)
# train for one epoch
engine.train(args, train_loader, model, optimizer, epoch)
# evaluate on validation set
if (epoch + 1) % args.eval_step == 0:
rsum, all_scores = engine.validate(args, val_loader, model)
is_best = rsum > best_rsum
if is_best:
best_score = all_scores
best_rsum = max(rsum, best_rsum)
if args.rank == 0:
# save ckpt
utils.save_checkpoint(
{
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'args': args,
'Eiters': model.Eiters,
},
is_best,
filename='ckpt_{}_{}_{:.2f}.pth.tar'.format(args.model_name ,epoch, best_rsum),
prefix=args.ckpt_save_path,
model_name=args.model_name)
print('')
print("================ evaluate result on val set =====================")
print("Current => [{}/{}] fold & [{}/{}] epochs"
.format(args.k_fold_current_num + 1, args.k_fold_nums, epoch + 1, args.epochs))
print("Now val score:")
print(all_scores)
print("Best val score:")
print(best_score)
print("=================================================================")
print('')
utils.log_to_txt(contexts="",
filename=path_train_info)
utils.log_to_txt(contexts="================ evaluate on val set ============================",
filename=path_train_info)
utils.log_to_txt(contexts="Current => [{}/{}] fold & [{}/{}] epochs"
.format(args.k_fold_current_num + 1, args.k_fold_nums, epoch + 1, args.epochs),
filename=path_train_info)
utils.log_to_txt("Now val score:",
filename=path_train_info)
utils.log_to_txt(contexts=all_scores, filename=path_train_info)
utils.log_to_txt("Best val score:",
filename=path_train_info)
utils.log_to_txt(best_score, filename=path_train_info)
utils.log_to_txt(contexts="=================================================================",
filename=path_train_info)
utils.log_to_txt(contexts="",
filename=path_train_info)
# evaluate on test set
if args.test_step and (epoch + 1) % args.test_step == 0:
rsum_, all_scores_ = engine.validate_test(args, test_loader, model)
is_best_ = rsum_ > best_rsum_
if is_best_:
best_score_ = all_scores_
best_rsum_ = max(rsum_, best_rsum_)
if args.rank == 0:
print('')
print("================ evaluate result on test set =====================")
print("Current => [{}/{}] fold & [{}/{}] epochs"
.format(args.k_fold_current_num + 1, args.k_fold_nums, epoch + 1, args.epochs))
print("Now test score:")
print(all_scores_)
print("Best test score:")
print(best_score_)
print("=================================================================")
print('')
utils.log_to_txt(contexts="",
filename=path_train_info)
utils.log_to_txt(contexts="================ evaluate on test set ============================",
filename=path_train_info)
utils.log_to_txt(contexts="Current => [{}/{}] fold & [{}/{}] epochs"
.format(args.k_fold_current_num + 1, args.k_fold_nums, epoch + 1, args.epochs),
filename=path_train_info)
utils.log_to_txt("Now test score:",
filename=path_train_info)
utils.log_to_txt(contexts=all_scores_,filename=path_train_info)
utils.log_to_txt("Best test score:",
filename=path_train_info)
utils.log_to_txt(best_score_,filename=path_train_info)
utils.log_to_txt(contexts="=================================================================",
filename=path_train_info)
utils.log_to_txt(contexts="",
filename=path_train_info)
if args.distributed:
# destroy process
dist.destroy_process_group()
def generate_random_samples(args):
# load all anns
caps = utils.load_from_txt(args.data_path+'train_caps.txt')
fnames = utils.load_from_txt(args.data_path+'train_filename.txt')
# merge
assert len(caps) // 5 == len(fnames)
all_infos = []
for img_id in range(len(fnames)):
cap_id = [img_id * 5 ,(img_id+1) * 5]
all_infos.append([caps[cap_id[0]:cap_id[1]], fnames[img_id]])
# shuffle
random.shuffle(all_infos)
# split_trainval
percent = 0.8
train_infos = all_infos[:int(len(all_infos)*percent)]
val_infos = all_infos[int(len(all_infos)*percent):]
# save to txt
train_caps = []
train_fnames = []
for item in train_infos:
for cap in item[0]:
train_caps.append(cap)
train_fnames.append(item[1])
utils.log_to_txt(train_caps, args.data_path+'train_caps_verify.txt',mode='w')
utils.log_to_txt(train_fnames, args.data_path+'train_filename_verify.txt',mode='w')
val_caps = []
val_fnames = []
for item in val_infos:
for cap in item[0]:
val_caps.append(cap)
val_fnames.append(item[1])
utils.log_to_txt(val_caps, args.data_path+'val_caps_verify.txt',mode='w')
utils.log_to_txt(val_fnames, args.data_path+'val_filename_verify.txt',mode='w')
print("Generate random samples to {} complete.".format(args.data_path))
######################################################################################
data_info_path = args.ckpt_save_path + 'data/'
if os.path.exists(data_info_path):
shutil.rmtree(data_info_path)
if not os.path.exists(data_info_path) and args.rank == 0:
os.makedirs(data_info_path)
# cpoy tran & val set
utils.log_to_txt(train_caps, data_info_path + 'train_caps_verify.txt',mode='w')
utils.log_to_txt(train_fnames, data_info_path + 'train_filename_verify.txt',mode='w')
utils.log_to_txt(val_caps, data_info_path + 'val_caps_verify.txt',mode='w')
utils.log_to_txt(val_fnames, data_info_path + 'val_filename_verify.txt',mode='w')
# vis & cal data set split
utils.vis_cal_data_info(args, data_info_path, train_fnames, val_fnames)
print("Copy random samples and Cal data info to {} complete.".format(args.ckpt_save_path))
######################################################################################
# stratified_random_samples
def generate_stratified_random_samples(args):
# load all ans
caps = utils.load_from_txt(args.data_path+'train_caps.txt')
fnames = utils.load_from_txt(args.data_path+'train_filename.txt')
# merge
assert len(caps) // 5 == len(fnames)
all_infos = []
for img_id in range(len(fnames)):
cap_id = [img_id * 5 ,(img_id+1) * 5]
all_infos.append([caps[cap_id[0]:cap_id[1]], fnames[img_id]])
# shuffle
random.shuffle(all_infos)
ff = [a[1] for a in all_infos]
class_ = utils.gen_class_from_list(ff)
cnt_cl = utils.cnt_class(class_)
p = 0.8
cnt_p = {}
for i in cnt_cl.keys():
cnt_p[i] = int(round(cnt_cl[i] * p))
train_infos = []
val_infos = []
for i in range(len(all_infos)):
if cnt_p[class_[i]] > 0:
train_infos.append(all_infos[i])
cnt_p[class_[i]] -= 1
else:
val_infos.append(all_infos[i])
# save to txt
train_caps = []
train_fnames = []
for item in train_infos:
for cap in item[0]:
train_caps.append(cap)
train_fnames.append(item[1])
utils.log_to_txt(train_caps, args.data_path+'train_caps_verify.txt',mode='w')
utils.log_to_txt(train_fnames, args.data_path+'train_filename_verify.txt',mode='w')
val_caps = []
val_fnames = []
for item in val_infos:
for cap in item[0]:
val_caps.append(cap)
val_fnames.append(item[1])
utils.log_to_txt(val_caps, args.data_path+'val_caps_verify.txt',mode='w')
utils.log_to_txt(val_fnames, args.data_path+'val_filename_verify.txt',mode='w')
print("Generate random samples to {} complete.".format(args.data_path))
######################################################################################
data_info_path = args.ckpt_save_path + 'data/'
if os.path.exists(data_info_path):
shutil.rmtree(data_info_path)
if not os.path.exists(data_info_path) and args.rank == 0:
os.makedirs(data_info_path)
# cpoy tran & val set
utils.log_to_txt(train_caps, data_info_path + 'train_caps_verify.txt',mode='w')
utils.log_to_txt(train_fnames, data_info_path + 'train_filename_verify.txt',mode='w')
utils.log_to_txt(val_caps, data_info_path + 'val_caps_verify.txt',mode='w')
utils.log_to_txt(val_fnames, data_info_path + 'val_filename_verify.txt',mode='w')
# vis & cal data set split
utils.vis_cal_data_info(args, data_info_path, train_fnames, val_fnames)
print("Copy random samples and Cal data info to {} complete.".format(args.ckpt_save_path))
######################################################################################
def update_options_savepath(args, k):
args_new = copy.deepcopy(args)
args_new.k_fold_current_num= k
if args.k_fold_nums > 1:
args_new.ckpt_save_path = args.ckpt_save_path + args.data_name + '/' + args.experiment_name + "/" + str(k) + "/"
else:
args_new.ckpt_save_path = args.ckpt_save_path + args.data_name + '/' + args.experiment_name + "/"
return args_new
if __name__ == '__main__':
args = parser_options()
# make logger
logger_path = args.ckpt_save_path + args.data_name + '/' + args.experiment_name + "/"
tb_logger.configure(logger_path, flush_secs=5)
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
# k_fold verify
for k in range(args.k_fold_nums):
print("Start {}th fold, total {} flod".format(k + 1, args.k_fold_nums))
# update save path
args_new = update_options_savepath(args, k)
# generate random train and val samples
if not args.fix_data:
if args_new.step_sample:
generate_stratified_random_samples(args_new)
else:
generate_random_samples(args_new)
else:
print('==> This experiment uses fixed data partition <==')
args_new.data_path = './fix_data/'+ args_new.data_name + '_precomp/'
# run experiment
main(args_new)