-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHouse Price Prediction using ML.py
104 lines (47 loc) · 1.32 KB
/
House Price Prediction using ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# In[2]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# In[3]:
data = pd.read_csv('BostonHousing.csv')
# In[5]:
data.head()
# In[7]:
data.info()
# In[8]:
print(data.isnull().sum())
# In[9]:
X = data.drop("medv", axis=1) # Features (independent variables)
y = data["medv"] # Target (dependent variable: Median value of homes)
# In[10]:
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# In[11]:
model = LinearRegression()
model.fit(X_train, y_train)
# In[12]:
# Predict on the test set
y_pred = model.predict(X_test)
# In[13]:
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# In[14]:
print(f"Mean Squared Error: {mse}")
print(f"R-squared Score: {r2}")
# In[15]:
# Visualize the predicted vs actual values
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test, y=y_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs Predicted Prices")
plt.show()
# In[ ]: