-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
60 lines (52 loc) · 2 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
class SegMetric(object):
def __init__(self, n_classes):
self.n_classes = n_classes
self.confusion_matrix = np.zeros((n_classes, n_classes))
def _fast_hist(self, label_true, label_pred, n_class):
mask = (label_true >= 0) & (label_true < n_class)
hist = np.bincount(
n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2
).reshape(n_class, n_class)
return hist
def update(self, label_trues, label_preds):
for lt, lp in zip(label_trues, label_preds):
self.confusion_matrix += self._fast_hist(
lt.flatten(), lp.flatten(), self.n_classes)
def get_scores(self):
"""
Returns accuracy score evaluation result.
- overall accuracy
- mean accuracy
- mean IU
- fwavacc
"""
hist = self.confusion_matrix
FP = hist.sum(axis=0) - np.diag(hist)
FN = hist.sum(axis=1) - np.diag(hist)
TP = np.diag(hist)
# TN = hist.sum() - (FP + FN + TP)
precision = TP / (TP+FP)
recall = TP / (TP+FN)
f1 = (2 * (precision*recall) / (precision + recall)).mean()
acc = np.diag(hist).sum() / hist.sum()
acc_cls = np.diag(hist) / hist.sum(axis=1)
acc_cls = np.nanmean(acc_cls)
iu = np.diag(hist) / (hist.sum(axis=1) +
hist.sum(axis=0) - np.diag(hist))
mean_iu = np.nanmean(iu)
freq = hist.sum(axis=1) / hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
cls_iu = dict(zip(range(self.n_classes), iu))
return (
{
"Overall Acc: \t": acc,
"Mean Acc : \t": acc_cls,
"FreqW Acc : \t": fwavacc,
"Mean IoU : \t": mean_iu,
"Overall F1: \t": f1
},
cls_iu,
)
def reset(self):
self.confusion_matrix = np.zeros((self.n_classes, self.n_classes))