-
Notifications
You must be signed in to change notification settings - Fork 422
/
gpt2_pico.py
62 lines (50 loc) · 2.28 KB
/
gpt2_pico.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
def gelu(x):
return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3)))
def softmax(x):
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def layer_norm(x, g, b, eps: float = 1e-5):
mean = np.mean(x, axis=-1, keepdims=True)
variance = np.var(x, axis=-1, keepdims=True)
return g * (x - mean) / np.sqrt(variance + eps) + b
def linear(x, w, b):
return x @ w + b
def ffn(x, c_fc, c_proj):
return linear(gelu(linear(x, **c_fc)), **c_proj)
def attention(q, k, v, mask):
return softmax(q @ k.T / np.sqrt(q.shape[-1]) + mask) @ v
def mha(x, c_attn, c_proj, n_head):
x = linear(x, **c_attn)
qkv_heads = list(map(lambda x: np.split(x, n_head, axis=-1), np.split(x, 3, axis=-1)))
causal_mask = (1 - np.tri(x.shape[0], dtype=x.dtype)) * -1e10
out_heads = [attention(q, k, v, causal_mask) for q, k, v in zip(*qkv_heads)]
x = linear(np.hstack(out_heads), **c_proj)
return x
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head):
x = x + mha(layer_norm(x, **ln_1), **attn, n_head=n_head)
x = x + ffn(layer_norm(x, **ln_2), **mlp)
return x
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head):
x = wte[inputs] + wpe[range(len(inputs))]
for block in blocks:
x = transformer_block(x, **block, n_head=n_head)
return layer_norm(x, **ln_f) @ wte.T
def generate(inputs, params, n_head, n_tokens_to_generate):
from tqdm import tqdm
for _ in tqdm(range(n_tokens_to_generate), "generating"):
logits = gpt2(inputs, **params, n_head=n_head)
next_id = np.argmax(logits[-1])
inputs.append(int(next_id))
return inputs[len(inputs) - n_tokens_to_generate :]
def main(prompt: str, n_tokens_to_generate: int = 40, model_size: str = "124M", models_dir: str = "models"):
from utils import load_encoder_hparams_and_params
encoder, hparams, params = load_encoder_hparams_and_params(model_size, models_dir)
input_ids = encoder.encode(prompt)
assert len(input_ids) + n_tokens_to_generate < hparams["n_ctx"]
output_ids = generate(input_ids, params, hparams["n_head"], n_tokens_to_generate)
output_text = encoder.decode(output_ids)
return output_text
if __name__ == "__main__":
import fire
fire.Fire(main)